scholarly journals Modeling and Analysis of PV System with Fuzzy Logic MPPT Technique for a DC Microgrid under Variable Atmospheric Conditions

Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2541
Author(s):  
Vasantharaj Subramanian ◽  
Vairavasundaram Indragandhi ◽  
Ramya Kuppusamy ◽  
Yuvaraja Teekaraman

Due to the easiness of setup and great energy efficiency, direct current (DC) microgrids (MGs) have become more common. Solar photovoltaic (PV) and fuel cell (FC) systems drive the DC MG. Under varying irradiance and temperature, this work proposes a fuzzy logic controller (FLC) based maximum power point tracking (MPPT) approach deployed to PV panel and FC generated boost converter. PV panels must be operated at their maximum power point (MPP) to enhance efficiency and shorten the system’s payback period. There are different kinds of MPPT approaches for using PV panels at that moment. Still, the FLC-based MPPT approach was chosen in this study because it responds instantaneously to environmental changes and is unaffected by circuit parameter changes. Similarly, this research proposes a better design strategy for FLC systems. It will improve the system reliability and stability of the response of the system. An FLC evaluates PV and FC via DC–DC boost converters to obtain this enhanced response time and accuracy.

2014 ◽  
Vol 71 (5) ◽  
Author(s):  
Ahmad Shaharuddin Mat Su, ◽  
Rasli Abd Ghani ◽  
Slamet Slamet

This paper presents the proposed model and simulation of a DC to DC converter with maximum power point tracking (MPPT) using fuzzy logic controller (FLC) for a standalone Photovoltaic (PV) System. This research will focus on the developing high performance DC to DC converter with fuzzy logic controller based to extract the maximum power that generated by the PV panel. The system composed of the PV array and DC-DC boost converter with MPPT system. The maximum power point tracking control is based on adaptive fuzzy logic to control ON/OFF time of IGBT switch of DC-DC boost converter. The proposed DC to DC converter is designed by using the Multisim software while the controller programme will be carried out by using the Matlab Simulink software. Pulse width modulation will be generated by the controller to trigger the IGBT gate. The performance of the proposed model is evaluated by the simulation and the result show that our proposed converter can convert more power from generated voltage. By using the fuzzy logic method to track the maximum power of the PV array, it is faster and the voltage is stable.


Author(s):  
N. Sivakumar ◽  
A. Sumathi

This paper proposes fuzzy logic controller based seven-level hybrid inverter for photovoltaic systems with sinusoidal pulse width-modulation (SPWM) techniques. Multi-Level Inverter technology have been developed in the area of high-power medium-voltage energy scheme, because of their advantages such as devices of high dv/dt rating, higher switching frequency, unlimited power processing, shape of output waveform and desired level of output voltage, current and frequency adjustment.This topology can be used there by enabling the scheme to reduce the Total Harmonic Distortion (THD) for high voltage applications. The Maximum Power Point Tracking algorithm is also used for extracting maximum power from the PV array connected to each DC link voltage level. The Maximum Power Point Tracking algorithm is solved by Perturb and Observer method.It has high performance with low Total Harmonic Distortion and reduced by this control strategy. The proposed system has verified and THD is obtained by using MATLAB/simulink.The result is compared with the hardware prototype working model.


Author(s):  
Adel Haddouche ◽  
Mohammed Kara ◽  
Lotfi Farah

<p><span lang="EN-US">This paper presents a fuzzy logic controller for maximum power point tracking (MPPT) in photovoltaic system with reduced number of rules instead of conventional 25 rules to make the system lighter which will improve the tracking speed and reduce the static error, engendering a global performance improvements. in this work the proposed system use the power variation and current variation as inputs to simplify the calculation, the introduced controller is connected to a conventional grid and simulated with MATLAB/SIMULINK. The simulation results shows a promising indication to adopt the introduced controller as an a good alternative  to traditional MPPT system for further practical applications</span></p>


2018 ◽  
Vol 7 (4.35) ◽  
pp. 457
Author(s):  
M. I. Iman ◽  
M. F. Roslan ◽  
Pin Jern Ker ◽  
M. A. Hannan

This work comprehensively demonstrates the performance analysis of Fuzzy Logic Controller (FLC) with Particle Swarm Optimization (PSO) Maximum Power Point Tracker (MPPT) algorithm on a stand-alone Photovoltaic (PV) applications systems. A PV panel, DC-DC Boost converter and resistive load was utilized as PV system. Three different MPPT algorithms were implemented in the converter. The result obtained from the converter was analyzed and compared to find the best algorithm to be used to identify the point in which maximum power can be achieve in a PV system. The objective is to reduce the time taken for the tracking of maximum power point of PV application system and minimize output power oscillation. The simulation was done by using MATLAB/Simulink with DC-DC Boost converter. The result shows that FLC method with PSO has achieved the fastest response time to track MPP and provide minimum oscillation compared to conventional P&O and FLC techniques.


Sign in / Sign up

Export Citation Format

Share Document