scholarly journals Task Offloading Strategy and Simulation Platform Construction in Multi-User Edge Computing Scenario

Electronics ◽  
2021 ◽  
Vol 10 (23) ◽  
pp. 3038
Author(s):  
Guilu Wu ◽  
Zhongliang Li

Various types of service applications increase the amount of computing in vehicular networks. The lack of computing resources of the vehicle itself will hinder the improvement of network performance. Mobile edge computing (MEC) technology is an effective computing method that is used to solve this problem at the edge of network for multiple mobile users. In this paper, we propose the multi-user task offloading strategy based on game theory to reduce the computational complexity and improve system performance. The task offloading decision making as a multi-user task offloading game is formulated to demonstrate how to achieve the Nash equilibrium (NE). Additionally, a task offloading algorithm is designed to achieve a NE, which represents an optimal or sub-optimal system overhead. In addition, the vehicular communication simulation frameworks Veins, SUMO model and OMNeT++ are adopted to run the proposed task offloading strategy. Numerical results show that the system overhead of the proposed task offloading strategy can degrade about 24.19% and 33.76%, respectively, in different scenarios.

Author(s):  
Lujie Tang ◽  
Bing Tang ◽  
Li Zhang ◽  
Feiyan Guo ◽  
Haiwu He

AbstractTaking the mobile edge computing paradigm as an effective supplement to the vehicular networks can enable vehicles to obtain network resources and computing capability nearby, and meet the current large-scale increase in vehicular service requirements. However, the congestion of wireless networks and insufficient computing resources of edge servers caused by the strong mobility of vehicles and the offloading of a large number of tasks make it difficult to provide users with good quality of service. In existing work, the influence of network access point selection on task execution latency was often not considered. In this paper, a pre-allocation algorithm for vehicle tasks is proposed to solve the problem of service interruption caused by vehicle movement and the limited edge coverage. Then, a system model is utilized to comprehensively consider the vehicle movement characteristics, access point resource utilization, and edge server workloads, so as to characterize the overall latency of vehicle task offloading execution. Furthermore, an adaptive task offloading strategy for automatic and efficient network selection, task offloading decisions in vehicular edge computing is implemented. Experimental results show that the proposed method significantly improves the overall task execution performance and reduces the time overhead of task offloading.


Sign in / Sign up

Export Citation Format

Share Document