vehicular communication
Recently Published Documents


TOTAL DOCUMENTS

791
(FIVE YEARS 314)

H-INDEX

34
(FIVE YEARS 6)

2023 ◽  
Vol 55 (1) ◽  
pp. 1-46
Author(s):  
Rodolfo Meneguette ◽  
Robson De Grande ◽  
Jo Ueyama ◽  
Geraldo P. Rocha Filho ◽  
Edmundo Madeira

Vehicular Edge Computing (VEC), based on the Edge Computing motivation and fundamentals, is a promising technology supporting Intelligent Transport Systems services, smart city applications, and urban computing. VEC can provide and manage computational resources closer to vehicles and end-users, providing access to services at lower latency and meeting the minimum execution requirements for each service type. This survey describes VEC’s concepts and technologies; we also present an overview of existing VEC architectures, discussing them and exemplifying them through layered designs. Besides, we describe the underlying vehicular communication in supporting resource allocation mechanisms. With the intent to overview the risks, breaches, and measures in VEC, we review related security approaches and methods. Finally, we conclude this survey work with an overview and study of VEC’s main challenges. Unlike other surveys in which they are focused on content caching and data offloading, this work proposes a taxonomy based on the architectures in which VEC serves as the central element. VEC supports such architectures in capturing and disseminating data and resources to offer services aimed at a smart city through their aggregation and the allocation in a secure manner.


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 279
Author(s):  
Saif Sabeeh ◽  
Krzysztof Wesołowski ◽  
Paweł Sroka

Cellular Vehicle-to-Everything communication is an important scenario of 5G technologies. Modes 3 and 4 of the wireless systems introduced in Release 14 of 3GPP standards are intended to support vehicular communication with and without cellular infrastructure. In the case of Mode 3, dynamic resource selection and semi-persistent resource scheduling algorithms result in a signalling cost problem between vehicles and infrastructure, therefore, we propose a means to decrease it. This paper employs Re-selection Counter in centralized resource allocation as a decremental counter of new resource requests. Furthermore, two new spectrum re-partitioning and frequency reuse techniques in Roadside Units (RSUs) are considered to avoid resource collisions and diminish high interference impact via increasing the frequency reuse distance. The two techniques, full and partial frequency reuse, partition the bandwidth into two sub-bands. Two adjacent RSUs apply these sub-bands with the Full Frequency Reuse (FFR) technique. In the Partial Frequency Reuse (PFR) technique, the sub-bands are further re-partitioned among vehicles located in the central and edge parts of the RSU coverage. The sub-bands assignment in the nearest RSUs using the same sub-bands is inverted concerning the current RSU to increase the frequency reuse distance. The PFR technique shows promising results compared with the FFR technique. Both techniques are compared with the single band system for different vehicle densities.


2022 ◽  
Vol 11 (1) ◽  
pp. e33911125020
Author(s):  
Francisco Jonatas Siqueira Coelho ◽  
Eulogio Gutierrez Huampo ◽  
Henrique Figueirôa Lacerda ◽  
Arthur Doria Meneses de Freitas ◽  
Abel Guilhermino da Silva Filho

The Cellular Vehicle-to-Everything (C-V2X) technology, as a widest version of Vehicular Ad-hoc Network (VANET), aims to interconnect vehicles and any other latest technological infrastructures. In this context, the fifth generation of mobile networks (5G) based on millimeter waves (mmWave) is an excellent alternative for the implementation of vehicular networks, mainly because it is capable of providing high data rates (Gbps) and ultra-low latency, requirements of C-V2X. On the other hand, mmWave signals are highly susceptible to blocking, causing low quality of service (QoS) in VANETs, compromising network functionality and the safety of drivers and pedestrians. Thus, in this work evolutionary computing techniques are applied in the simulation of a 5G vehicular network based on millimeter waves, exploring Media Access Control (MAC) sublayer parameters to optimize packet loss, latency and throughput, in order to optimize inter-vehicular communication. The Multi-objective Flower Pollination Algorithm (MOFPA) was used for this purpose. The results obtained show that the adopted approach can reach results close to the optimal pareto of non-dominated solutions, with a 75% reduction in exploration time in relation to the exhaustive search process. Finally, the performance of the metaheuristics adopted is compared with the non-dominated genetic classification algorithm (NSGA-II) and the multi-objective differential evolutionary algorithm (MODE).


Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 173
Author(s):  
Andrei Vladyko ◽  
Vasiliy Elagin ◽  
Anastasia Spirkina ◽  
Ammar Muthanna ◽  
Abdelhamied A. Ateya

Vehicular communication is a promising technology that has been announced as a main use-case of the fifth-generation cellular system (5G). Vehicle-to-everything (V2X) is the vehicular communication paradigm that enables the communications and interactions between vehicles and other network entities, e.g., road-side units (RSUs). This promising technology faces many challenges related to reliability, availability and security of the exchanged data. To this end, this work aims to solve the scientific problem of building a vehicular network architecture for reliable delivery of correct and uncompromised data within the V2X concept to improve the safety of road users, using blockchain technology and mobile edge computing (MEC). The proposed work provides a formalized mathematical model of the system, taking into account the interconnection of objects and V2X information channels and an energy-efficient offloading algorithm to manage traffic offloading to the MEC server. The main applications of the blockchain and MEC technology in the developed system are discussed. Furthermore, the developed system, with the introduced sub-systems and algorithms, was evaluated over a reliable environment, for different simulation scenarios, and the obtained results are discussed.


Author(s):  
Ahmed Al-Hilo ◽  
Moataz Shokry ◽  
Mohamed Elhattab ◽  
Chadi Assi ◽  
Sanaa Sharafeddine

Author(s):  
Hamdan Hejazi ◽  
László Bokor

In the past few years, automotive Internet of Things (IoT) solutions have become one of the most significant IoT application areas in the shape of vehicular communication to connect vehicles and such the so-called Internet of Vehicles (IoV) to be used in Intelligent Transportation Systems (ITS) environments. With an increasing level of cooperation, ITS could facilitate smart city operations by providing cooperative intelligent traffic solutions. Modern Cooperative ITS (C-ITS) solutions have started to be implemented in the whole world with various deployment models and significant improvements in the integration of Vehicle-to-Everything (V2X) communication and IoT solutions. To highlight the current V2X technology evolution towards an IoT/IoV era, this paper presents a comprehensive survey about the convergence between IoT and V2X use-cases together with their supporting technologies in the cooperative ITS ecosystem worldwide. We show how IoT could enable advanced V2X applications to get widespread and increase ITS efficiency.


2021 ◽  
Vol 14 (1) ◽  
pp. 176
Author(s):  
Evariste Twahirwa ◽  
James Rwigema ◽  
Raja Datta

A novel computing paradigm, called the Internet of things emerged a few years ago. IoT is materialized by connecting both real and digital worlds together. The deployment of IoT in vehicular networks has introduced a new vehicular communication technology-themed vehicular internet of things (V-IoT). With the introduction of miniaturized sensors and actuators, V-IoT has demonstrated the ability to improve the level of urban transport systems through the development and deployment of low-cost but powerful technologies which seamlessly upgrade the level of smart transportation in urban environments. In this research article, we have presented the features of V-IoT that encompass both the benefits and potential challenges of the technology. Low-cost IoT prototypes have been built and tested for numerous functions in vehicular environments. The monitored parameters include air, road conditions such as traffics flow sizes, air quality, weather parameters, and signal status in terms of Received signal strength indicator, and Signal noise ratio for both road and intra-vehicular environments. Devices are implemented at every IoT architectural layer and tested on a web-based IoT front-end application using different protocols like LoRaWAN. Two LoRa sensors have been deployed in the public bus to monitor some of the mentioned parameters on a real-time basis and historical data could be retrieved through the developed web-based dashboard. Simplistic algorithms are implemented for both real-time and historical data demonstration.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Yanzi Chen ◽  
Lei Ma ◽  
Xinjian Ou ◽  
Jingjing Liao

To realize reliable and stable millimeter-wave (mmWave) vehicular wireless communication, the research of vehicular channel characteristics in the dense urban environment is becoming increasingly important. A comprehensive research on the channel characteristics for 30 GHz vehicular communication in the Beijing Central Business District (CBD) scenario is conducted in this paper. The self-developed high-performance ray-tracing (RT) simulator is employed to support intensive simulations. Based on simulation results, the effects of multiantenna and beam switching on the key channel parameters are analyzed, as well as the impact of different traffic flows. The results can provide theoretical and data support for the evaluation of vehicular channel characteristics and will help for the design of the vehicular communication system enabling future intelligent transportation.


2021 ◽  
Author(s):  
Zadid Khan ◽  
Sakib Mahmud Khan ◽  
Mashrur Chowdhury ◽  
Mizanur rahman ◽  
Mhafuzul islam

Due to the gradual increase in the volume of data generated by connected vehicles (CV), future vehicle-to-infrastructure (V2I) applications will require a communication medium that offers high-speed (high bandwidth) while maintaining reliability in high-mobility traffic scenarios. The 5G millimeter-wave (mmWave) can solve the communication issues related to V2I applications. However, the performance of the 5G mmWave for vehicular communication in high-mobility urban traffic scenarios is yet to be evaluated. This study presents a case study on assessing the performance of the 5G mmWave based vehicular communication in such traffic scenarios. We have designed three realistic use cases for performance evaluation based on three challenges: increased CV penetration level, dynamic mobility, and V2I application specifications, such as data rate and packet size. Then, we have created a simulation-based experimental setup using a microscopic traffic simulator (SUMO) and a communication network simulator (ns-3) to simulate the use cases. We have used delay, packet loss, throughput, and signal-to-interference-plus-noise ratio (SINR) as the communication performance evaluation metrics. Our analyses found that the CV penetration level is the primary determinant of the performance of the 5G mmWave. Moreover, once the data rate is increased by a factor of 40, delay and packet loss increase by factors of 6.8 and 2.8, respectively.


Sign in / Sign up

Export Citation Format

Share Document