Francisco Jonatas Siqueira Coelho
◽
Eulogio Gutierrez Huampo
◽
Henrique Figueirôa Lacerda
◽
Arthur Doria Meneses de Freitas
◽
Abel Guilhermino da Silva Filho
The Cellular Vehicle-to-Everything (C-V2X) technology, as a widest version of Vehicular Ad-hoc Network (VANET), aims to interconnect vehicles and any other latest technological infrastructures. In this context, the fifth generation of mobile networks (5G) based on millimeter waves (mmWave) is an excellent alternative for the implementation of vehicular networks, mainly because it is capable of providing high data rates (Gbps) and ultra-low latency, requirements of C-V2X. On the other hand, mmWave signals are highly susceptible to blocking, causing low quality of service (QoS) in VANETs, compromising network functionality and the safety of drivers and pedestrians. Thus, in this work evolutionary computing techniques are applied in the simulation of a 5G vehicular network based on millimeter waves, exploring Media Access Control (MAC) sublayer parameters to optimize packet loss, latency and throughput, in order to optimize inter-vehicular communication. The Multi-objective Flower Pollination Algorithm (MOFPA) was used for this purpose. The results obtained show that the adopted approach can reach results close to the optimal pareto of non-dominated solutions, with a 75% reduction in exploration time in relation to the exhaustive search process. Finally, the performance of the metaheuristics adopted is compared with the non-dominated genetic classification algorithm (NSGA-II) and the multi-objective differential evolutionary algorithm (MODE).