scholarly journals Software In-The-Loop Simulation of an Advanced SVM Technique for 2ϕ-Inverter Control Fed a TPIM as Wind Turbine Emulator

Electronics ◽  
2022 ◽  
Vol 11 (2) ◽  
pp. 187
Author(s):  
Intissar Moussa ◽  
Adel Khedher

An appropriate modulation scheme selection ensures inverter performance. Thus, space vector modulation (SVM) is more efficient and has its own distinct advantages compared to other pulse width modulation (PWM) techniques. This work deals with the development of an advanced space vector pulse width modulation (SVM) technique for two-phase inverter control using an XSG library to ensure rapid prototyping of the controller FPGA implementation. The proposed architecture is applied digitally and in real time to drive a two-phase induction motor (TPIM) for small-scale wind turbine emulation (WTE) profiles in laboratories with minimum current ripple and torque oscillation. Four space voltage vectors generated for the used SVM technique do not contain a zero vector. Hence, for an adequate adjustment of these four vectors, a reference voltage vector located in the square locus is determined. Considering the asymmetry between the main and auxiliary windings, the TPIM behavior, which is fed through the advanced SVM controlled-two-phase inverter (2ϕ-inverter), is studied, allowing us to control the speed and the torque under different conditions for wind turbine emulation. Several quantities, such as electromagnetic torque, rotor fluxes, stator currents and speed, are analyzed. To validate the obtained results using both Simulink and XSG interfaces, the static and dynamic characteristics of the WTE are satisfactorily reproduced. The collected speed and torque errors between the reference and actual waveforms show low rates, proving emulator controller effectiveness.

2015 ◽  
Vol 8 (7) ◽  
pp. 1083-1094 ◽  
Author(s):  
Pradabane Srinivasan ◽  
Beeramangalla Lakshminarasaiah Narasimharaju ◽  
Nandiraju Venkata Srikanth

2021 ◽  
Vol 288 ◽  
pp. 01059
Author(s):  
Ngoc Sy Doan ◽  
Alexey Nikolaevich Tsvetkov ◽  
Thi Hoa Nguyen

Three-phase two-level inverters using space vector modulation (SVPWM) technology are one of the most popular inverter architectures today. The process of designing and manufacturing inverter systems usually goes through the following stages: simulation, hardware design, software programming on MCU, editing … In this article, we will focus on problem researching and implementing the SVPWM algorithm on an Arduino in detail. Besides, it is also based on the experimental survey of the inverter’s parameters, analyzing and proposing improved solutions for the inverter to operate optimally. SVPWM algorithm is tested on Arduino Mega 2560 board and small power inverter model.


Sign in / Sign up

Export Citation Format

Share Document