scholarly journals Novel Calibration of MIESM and Reduction of CQI Feedback for Improved Fast Link Adaptation

Electronics ◽  
2019 ◽  
Vol 8 (3) ◽  
pp. 278 ◽  
Author(s):  
Hyunjee Lee ◽  
Haseong Kim ◽  
Hosung Park

In mobile communications systems, fast link adaptation (FLA) aims to achieve high system throughput of each user by accurately determining a channel quality indicator (CQI) for feedback, which predicts the next channel based on the current channel state information. In this paper, we propose an improved calibration method of mutual information effective signal-to noise-ratio mapping (MIESM) to determine an accurate CQI feedback value in FLA. Our proposed calibration method derives the optimal calibration factors by considering various channel environments and setting the effective interval of effective signal-to-noise ratio, which is a single value compressing the information of channel characteristics at a time. The simulation is performed in various signal-to-noise ratio (SNR) ranges to account for the actual environments, and the calibration factors are derived from the proposed calibration method. The results show that the CQI feedback value from the derived calibration factors are more accurate than the existing calibration factors. In addition, we discuss a study regarding the time-coherence-based CQI feedback bit reduction scheme. Assuming that each channel is correlated to the previous and subsequent channels, we propose a method to reduce the number of CQI feedback bits adapted to the corresponding SNR regime. Through the simulation, we compare the system throughputs of the proposed adaptive CQI feedback and the conventional CQI feedback scheme. As a result, the proposed CQI feedback has almost the same system throughput as the conventional CQI feedback scheme, but the average number of feedback bits is reduced, thereby improving the efficiency of the communication.

2014 ◽  
Vol 556-562 ◽  
pp. 6328-6331
Author(s):  
Su Zhen Shi ◽  
Yi Chen Zhao ◽  
Li Biao Yang ◽  
Yao Tang ◽  
Juan Li

The LIFT technology has applied in process of denoising to ensure the imaging precision of minor faults and structure in 3D coalfield seismic processing. The paper focused on the denoising process in two study areas where the LIFT technology is used. The separation of signal and noise is done firstly. Then denoising would be done in the noise data. The Data of weak effective signal that is from the noise data could be blended with the original effective signal to reconstruct the denoising data, so the result which has high signal-to-noise ratio and preserved amplitude is acquired. Thus the fact shows that LIFT is an effective denoising method for 3D seismic in coalfield and could be used widely in other work area.


2006 ◽  
Vol 32 (2) ◽  
pp. 175 ◽  
Author(s):  
Fabrice Devaux ◽  
Jean Luc Blanchet ◽  
Eric Lantz

Sign in / Sign up

Export Citation Format

Share Document