scholarly journals An Efficient Resource Allocation Algorithm for OFDM-Based NOMA in 5G Systems

Electronics ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1399 ◽  
Author(s):  
Omar A. Saraereh ◽  
Amer Alsaraira ◽  
Imran Khan ◽  
Peerapong Uthansakul

Non-orthogonal multiple access (NOMA) has become the key technology in the future 5G wireless networks. It can achieve multi-user multiplexing in the transmit power domain by allocating different power, which can effectively improve the system capacity and spectral efficiency. Aiming at the problem of high computational complexity and improving system capacity in non-orthogonal multiple access (NOMA) based on orthogonal frequency division multiple access (OFDMA) for 5G wireless cellular networks, this paper proposes an improved low complexity radio resource allocation algorithm for user grouping and power allocation optimization. The optimization model is established with the goal of maximizing system capacity. Through the step-by-step optimization idea, the complex non-convex optimization problem is decomposed into two sub-problems to be solved separately. Firstly, all users are grouped based on the greedy method, and then the power allocation is performed on the sub-carriers of the fixed group. Simulation results show that the proposed algorithm has better system capacity than the existing state-of-the-art algorithms and reduced complexity performance.

2019 ◽  
Vol 9 (18) ◽  
pp. 3816 ◽  
Author(s):  
Saraereh ◽  
Mohammed ◽  
Khan ◽  
Rabie ◽  
Affess

In order to solve the problem of interference and spectrum optimization caused by D2D (device-to-device) communication multiplexing uplink channel of heterogeneous cellular networks, the allocation algorithm based on the many-to-one Gale-Shapley (M21GS) algorithm proposed in this paper can effectively solve the resource allocation problem of D2D users multiplexed cellular user channels in heterogeneous cellular network environments. In order to improve the utilization of the wireless spectrum, the algorithm allows multiple D2D users to share the channel resources of one cellular user and maintains the communication service quality of the cellular users and D2D users by setting the signal to interference and noise ratio (SINR) threshold. A D2D user and channel preference list are established based on the implemented system’s capacity to maximize the system total capacity objective function. Finally, we use the Kuhn–Munkres (KM) algorithm to achieve the optimal matching between D2D clusters and cellular channel to maximize the total capacity of D2D users. The MATLAB simulation is used to compare and analyze the total system capacity of the proposed algorithm, the resource allocation algorithm based on the delay acceptance algorithm, the random resource allocation algorithm and the optimal exhaustive search algorithm, and the maximum allowable access for D2D users. The simulation results show that the proposed algorithm has fast convergence and low complexity, and the total capacity is close to the optimal algorithm.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Ioannis G. Fraimis ◽  
Stavros A. Kotsopoulos

We study the important problem of resource allocation for the downlink of Multiple-Input Multiple output (MIMO) Multicast Wireless Systems operating over frequency-selective channels and we propose a low-complexity but efficient resource allocation algorithm for MIMO-enabled OFDMA systems. The proposed solution guarantees a minimum spectrum share for each user while also takes advantage of the multicast transmission mode. The presence of multiple antennas in both transmitter and receiver offers spatial diversity to the system along with the frequency diversity added by the OFDMA access scheme. The computational complexity is reduced from exponential to linear and validation of the proposed solution is achieved through various simulation scenarios in comparison with other multicast and unicast reference schemes used in MIMO-OFDMA systems. Numerical results and complexity analysis demonstrate the feasibility of the proposed algorithm.


Electronics ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 705
Author(s):  
Yali Wu ◽  
Shuang Zhang ◽  
Zhengxuan Liu ◽  
Xiaoshuang Liu ◽  
Jianfeng Li

To alleviate random access congestion and support massive-connections with less energy consumption for machine-type communications (MTC) in the 5G cellular network, we propose an efficient resource allocation for massive MTC (mMTC) with hybrid non-orthogonal multiple access (NOMA)-orthogonal frequency division multiple access (OFDMA). First, a hybrid multiple access scheme, including the NOMA-based congestion-alleviating access scheme (NCAS) and OFDMA-based congestion-alleviating access scheme (OCAS), is proposed, in which the NOMA based devices coexist with OFDMA based ones. Then, aiming at maximizing the system access capacity, a traffic-aware resource blocks (RBs) allocation is investigated to optimize RBs allocation for preamble transmission and data packets transmission, as well as to optimize the RBs allocation between NCAS and OCAS for the RBs usage efficiency improvement. Next, aiming at the problem of high computational complexity and improving energy efficiency in hybrid NOMA-OFDMA based cellular M2M communications, this paper proposes an improved low complexity power allocation algorithm. The feasibility conditions of power allocation solution under the maximum transmit power constraints and quality of service (QoS) requirements of the devices is investigated. The original non-convex optimization problem is solved under the feasibility conditions by two iterative algorithms. Finally, a device clustering scheme is proposed based on the channel gain difference and feasible condition of power allocation solution, by which NOMA based devices and OFDMA based devices can be determined. Simulation results show that compared with non-orthogonal random access and transmission (NORA-DT), the proposed resource allocation scheme for hybrid NOMA-OFDMA systems can efficiently improve the performance of access capacity and energy efficiency.


2013 ◽  
Vol E96.B (5) ◽  
pp. 1218-1221 ◽  
Author(s):  
Qingli ZHAO ◽  
Fangjiong CHEN ◽  
Sujuan XIONG ◽  
Gang WEI

2019 ◽  
Vol 151 ◽  
pp. 132-146 ◽  
Author(s):  
Mohammadhasan Miri ◽  
Kamal Mohamedpour ◽  
Yousef Darmani ◽  
Mahasweta Sarkar ◽  
R. Lal Tummala

Sign in / Sign up

Export Citation Format

Share Document