scholarly journals A Semidefinite Relaxation Method for Elliptical Location

Electronics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 128
Author(s):  
Xin Wang ◽  
Ying Ding ◽  
Le Yang

Wireless location is a supporting technology in many application scenarios of wireless communication systems. Recently, an increasing number of studies have been conducted on range-based elliptical location in a variety of backgrounds. Specifically, the design and implementation of position estimators are of great significance. The difficulties arising from implementing a maximum likelihood estimator for elliptical location come from the nonconvexity of the negative log-likelihood functions. The need for computational efficiency further enhances the difficulties. Traditional algorithms suffer from the problems of high computational cost and low initialization justifiability. On the other hand, existing closed-form solutions are sensitive to the measurement noise levels. We recognize that the root of these drawbacks lies in an oversimplified linear approximation of the nonconvex model, and accordingly design a maximum likelihood estimator through semidefinite relaxation for elliptical location. We relax the elliptical location problems to semidefinite programs, which can be solved efficiently with interior-point methods. Additionally, we theoretically analyze the complexity of the proposed algorithm. Finally, we design and carry out a series of simulation experiments, showing that the proposed algorithm outperforms several widely used closed-form solutions at a wide range of noise levels. Extensive results under extreme noise conditions verify the deployability of the algorithm.

Fractals ◽  
2015 ◽  
Vol 23 (04) ◽  
pp. 1550045 ◽  
Author(s):  
YEN-CHING CHANG

The efficiency and accuracy of estimating the Hurst exponent have been two inevitable considerations. Recently, an efficient implementation of the maximum likelihood estimator (MLE) (simply called the fast MLE) for the Hurst exponent was proposed based on a combination of the Levinson algorithm and Cholesky decomposition, and furthermore the fast MLE has also considered all four possible cases, including known mean, unknown mean, known variance, and unknown variance. In this paper, four cases of an approximate MLE (AMLE) were obtained based on two approximations of the logarithmic determinant and the inverse of a covariance matrix. The computational cost of the AMLE is much lower than that of the MLE, but a little higher than that of the fast MLE. To raise the computational efficiency of the proposed AMLE, a required power spectral density (PSD) was indirectly calculated by interpolating two suitable PSDs chosen from a set of established PSDs. Experimental results show that the AMLE through interpolation (simply called the interpolating AMLE) can speed up computation. The computational speed of the interpolating AMLE is on average over 24 times quicker than that of the fast MLE while remaining the accuracy very close to that of the MLE or the fast MLE.


2018 ◽  
Vol 616 ◽  
pp. A95 ◽  
Author(s):  
Sebastian Espinosa ◽  
Jorge F. Silva ◽  
Rene A. Mendez ◽  
Rodrigo Lobos ◽  
Marcos Orchard

Context. Astrometry relies on the precise measurement of the positions and motions of celestial objects. Driven by the ever-increasing accuracy of astrometric measurements, it is important to critically assess the maximum precision that could be achieved with these observations. Aims. The problem of astrometry is revisited from the perspective of analyzing the attainability of well-known performance limits (the Cramér–Rao bound) for the estimation of the relative position of light-emitting (usually point-like) sources on a charge-coupled device (CCD)-like detector using commonly adopted estimators such as the weighted least squares and the maximum likelihood. Methods. Novel technical results are presented to determine the performance of an estimator that corresponds to the solution of an optimization problem in the context of astrometry. Using these results we are able to place stringent bounds on the bias and the variance of the estimators in close form as a function of the data. We confirm these results through comparisons to numerical simulations under a broad range of realistic observing conditions. Results. The maximum likelihood and the weighted least square estimators are analyzed. We confirm the sub-optimality of the weighted least squares scheme from medium to high signal-to-noise found in an earlier study for the (unweighted) least squares method. We find that the maximum likelihood estimator achieves optimal performance limits across a wide range of relevant observational conditions. Furthermore, from our results, we provide concrete insights for adopting an adaptive weighted least square estimator that can be regarded as a computationally efficient alternative to the optimal maximum likelihood solution. Conclusions. We provide, for the first time, close-form analytical expressions that bound the bias and the variance of the weighted least square and maximum likelihood implicit estimators for astrometry using a Poisson-driven detector. These expressions can be used to formally assess the precision attainable by these estimators in comparison with the minimum variance bound.


2008 ◽  
Vol 2008 ◽  
pp. 1-15 ◽  
Author(s):  
Ma Jose Domenech-Benlloch ◽  
Jose Manuel Gimenez-Guzman ◽  
Vicent Pla ◽  
Jorge Martinez-Bauset ◽  
Vicente Casares-Giner

We are concerned with the analytic solution of multiserver retrial queues including the impatience phenomenon. As there are not closed-form solutions to these systems, approximate methods are required. We propose two different generalized truncated methods to effectively solve this type of systems. The methods proposed are based on the homogenization of the state space beyond a given number of users in the retrial orbit. We compare the proposed methods with the most well-known methods appeared in the literature in a wide range of scenarios. We conclude that the proposed methods generally outperform previous proposals in terms of accuracy for the most common performance parameters used in retrial systems with a moderated growth in the computational cost.


2012 ◽  
Vol 12 (02) ◽  
pp. 395-402 ◽  
Author(s):  
MAHDI TEIMOURI ◽  
SARALEES NADARAJAH

The Weibull distribution is the most popular model for lifetimes. However, the maximum likelihood estimators for the Weibull distribution are not available in closed form. In this note, we derive a simple, consistent, closed form estimator for the Weibull shape parameter. This estimator is independent of the Weibull scale parameter. Simulation studies show that this estimator performs as well as the maximum likelihood estimator.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Yen-Ching Chang

This paper aims to efficiently implement the maximum likelihood estimator (MLE) for Hurst exponent, a vital parameter embedded in the process of fractional Brownian motion (FBM) or fractional Gaussian noise (FGN), via a combination of the Levinson algorithm and Cholesky decomposition. Many natural and biomedical signals can often be modeled as one of these two processes. It is necessary for users to estimate the Hurst exponent to differentiate one physical signal from another. Among all estimators for estimating the Hurst exponent, the maximum likelihood estimator (MLE) is optimal, whereas its computational cost is also the highest. Consequently, a faster but slightly less accurate estimator is often adopted. Analysis discovers that the combination of the Levinson algorithm and Cholesky decomposition can avoid storing any matrix and performing any matrix multiplication and thus save a great deal of computer memory and computational time. In addition, the first proposed MLE for the Hurst exponent was based on the assumptions that the mean is known as zero and the variance is unknown. In this paper, all four possible situations are considered: known mean, unknown mean, known variance, and unknown variance. Experimental results show that the MLE through efficiently implementing numerical computation can greatly enhance the computational performance.


Sign in / Sign up

Export Citation Format

Share Document