scholarly journals A Two-Branch Network for Weakly Supervised Object Localization

Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 955
Author(s):  
Chang Sun ◽  
Yibo Ai ◽  
Sheng Wang ◽  
Weidong Zhang

Weakly supervised object localization (WSOL) has attracted intense interest in computer vision for instance level annotations. As a hot research topic, a number of existing works concentrated on utilizing convolutional neural network (CNN)-based methods, which are powerful in extracting and representing features. The main challenge in CNN-based WSOL methods is to obtain features covering the entire target objects, not only the most discriminative object parts. To overcome this challenge and to improve the detection performance of feature extracting related WSOL methods, a CNN-based two-branch model was presented in this paper to locate objects using supervised learning. Our method contained two branches, including a detection branch and a self-attention branch. During the training process, the two branches interacted with each other by regarding the segmentation mask from the other branch as the pseudo ground truth labels of itself. Our model was able to focus on capturing the information of all the object parts due to the self-attention mechanism. Additionally, we embedded multi-scale detection into our two-branch method to output two-scale features. We evaluated our two-branch network on the CUB-200-2011 and VOC2007 datasets. The pointing localization, intersection over union (IoU) localization, and correct localization precision (CorLoc) results demonstrated competitive performance with other state-of-the-art methods in WSOL.

Author(s):  
Bo Wang ◽  
Chunfeng Yuan ◽  
Bing Li ◽  
Xinmiao Ding ◽  
Zeya Lia ◽  
...  

PLoS ONE ◽  
2021 ◽  
Vol 16 (7) ◽  
pp. e0254054
Author(s):  
Gaihua Wang ◽  
Lei Cheng ◽  
Jinheng Lin ◽  
Yingying Dai ◽  
Tianlun Zhang

The large intra-class variance and small inter-class variance are the key factor affecting fine-grained image classification. Recently, some algorithms have been more accurate and efficient. However, these methods ignore the multi-scale information of the network, resulting in insufficient ability to capture subtle changes. To solve this problem, a weakly supervised fine-grained classification network based on multi-scale pyramid is proposed in this paper. It uses pyramid convolution kernel to replace ordinary convolution kernel in residual network, which can expand the receptive field of the convolution kernel and use complementary information of different scales. Meanwhile, the weakly supervised data augmentation network (WS-DAN) is used to prevent over fitting and improve the performance of the model. In addition, a new attention module, which includes spatial attention and channel attention, is introduced to pay more attention to the object part in the image. The comprehensive experiments are carried out on three public benchmarks. It shows that the proposed method can extract subtle feature and achieve classification effectively.


Author(s):  
Wenfei Yang ◽  
Tianzhu Zhang ◽  
Zhendong Mao ◽  
Yongdong Zhanga ◽  
Qi Tian ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document