scholarly journals Pruning Convolutional Neural Networks with an Attention Mechanism for Remote Sensing Image Classification

Electronics ◽  
2020 ◽  
Vol 9 (8) ◽  
pp. 1209 ◽  
Author(s):  
Shuo Zhang ◽  
Gengshen Wu ◽  
Junhua Gu ◽  
Jungong Han

Despite the great success of Convolutional Neural Networks (CNNs) in various visual recognition tasks, the high computational and storage costs of such deep networks impede their deployments in real-time remote sensing tasks. To this end, considerable attention has been given to the filter pruning techniques, which enable slimming deep networks with acceptable performance drops and thus implementing them on the remote sensing devices. In this paper, we propose a new scheme, termed Pruning Filter with Attention Mechanism (PFAM), to compress and accelerate traditional CNNs. In particular, a novel correlation-based filter pruning criterion, which explores the long-range dependencies among filters via an attention module, is employed to select the to-be-pruned filters. Distinct from previous methods, the less correlated filters are first pruned after the pruning stage in the current training epoch, and they are reconstructed and updated during the next training epoch. Doing so allows manipulating input data with the maximum information preserved when executing the original training strategy such that the compressed network model can be obtained without the need for the pretrained model. The proposed method is evaluated on three public remote sensing image datasets, and the experimental results demonstrate its superiority, compared to state-of-the-art baselines. Specifically, PFAM achieves a 0.67% accuracy improvement with a 40% model-size reduction on the Aerial Image Dataset (AID) dataset, which is impressive.

2021 ◽  
Author(s):  
Rajagopal T K P ◽  
Sakthi G ◽  
Prakash J

Abstract Hyperspectral remote sensing based image classification is found to be a very widely used method employed for scene analysis that is from a remote sensing data which is of a high spatial resolution. Classification is a critical task in the processing of remote sensing. On the basis of the fact that there are different materials with reflections in a particular spectral band, all the traditional pixel-wise classifiers both identify and also classify all materials on the basis of their spectral curves (or pixels). Owing to the dimensionality of the remote sensing data of high spatial resolution along with a limited number of labelled samples, a remote sensing image of a high spatial resolution tends to suffer from something known as the Hughes phenomenon which can pose a serious problem. In order to overcome such a small-sample problem, there are several methods of learning like the Support Vector Machine (SVM) along with the other methods that are kernel based and these were introduced recently for a remote sensing classification of the image and this has shown a good performance. For the purpose of this work, an SVM along with Radial Basis Function (RBF) method was proposed. But, a feature learning approach for the classification of the hyperspectral image is based on the Convolutional Neural Networks (CNNs). The results of the experiment that were based on various image datasets that were hyperspectral which implies that the method proposed will be able to achieve a better performance of classification compared to other traditional methods like the SVM and the RBF kernel and also all conventional methods based on deep learning (CNN).


Sign in / Sign up

Export Citation Format

Share Document