scholarly journals Economic Power Schedule and Transactive Energy through an Intelligent Centralized Energy Management System for a DC Residential Distribution System

Energies ◽  
2017 ◽  
Vol 10 (7) ◽  
pp. 916 ◽  
Author(s):  
Jingpeng Yue ◽  
Zhijian Hu ◽  
Chendan Li ◽  
Juan C. Vasquez ◽  
Josep M. Guerrero
Author(s):  
Jingpeng Yue ◽  
Zhijian Hu ◽  
Chendan Li ◽  
J. C. Vasquez ◽  
Josep M. Guerrero

DC residential distribution system (RDS) consisted by DC living home will be a significant integral part in the future green transmission. Meanwhile, the increasing number of distributed resources and intelligent devices will change the power flow between main grid and demand sides. The utilization of distributed generations (DGs) requires an economic operation, stability, environmentally friendly in the whole DC system. This paper not only presents an optimization schedule and transactive energy (TE) approach through centralized energy management system (CEMS), but a control approach to implement and ensure DG output voltages to various DC buses in DC RDS. Based on data collection, prediction and a certain objection, the expert system in CEMS can work out the optimization schedule, after this, the voltage droop control for steady voltage is aligned with the command of unit power schedule. In this work, a DC RDS is as a case study to demonstrate the process, the RDS is associated with unit economic models, cost minimization objective is proposed to achieve based on real-time electrical price. The results show that the proposed framework and methods will help the targeted DC residential system to reduce the total cost and reach stability and efficiency.


Author(s):  
Taufik Ridwan

As one manufacturing industry with a large level of energy consumption makes energy management mandatory applied at PT. XYZ, the purpose of this research is to design energy management system implementation strategy in PT. XYZ based on ISO 50001. Started by self assessment and by collecting data on the use of primary energy sources in the company, followed by processing and analyzing using simple linear regression. The self assessment results show 38% of the total value’s completeness of existing program in the clause of ISO 50001. From the processing and analyzing’s energy usage showed energy baseline and energy performance indicators (EnPI) of the company. The result of research is identifies and proposes the potential of energy savings in air compressor distribution system, steam boiler distribution, and electrical distribution system with good housekeeping, control system, and modification, proposes the energy management system implementation based on Deming’s PDCA cycle, and continued by recommending roadmap towards the implementation of energy management systems. 


Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4551
Author(s):  
Juyong Kim ◽  
Hongjoo Kim ◽  
Jintae Cho ◽  
Youngpyo Cho ◽  
Yoonsung Cho ◽  
...  

This paper is about the development of the real-time direct current (DC) network analysis applications for the operation of DC power systems. The applications are located in the central energy management system (EMS) and provide the operator with the optimal solution for operation in real time. Developed DC applications are not limited by voltage level. Applications can be used at all DC voltage levels such as low voltage, medium voltage and high voltage. A program configuration and sequence for analyzing the DC distribution system are suggested. Algorithms of each program are presented and the differences when compared with the processes of the applications of the existing alternating current (AC) systems are analyzed. The DC grid demonstration site at the Korea Electric Power Corporation (KEPCO) power testing center is introduced. The details of EMS and applications installation are described. The developed DC applications were installed in the EMS of the demonstration site and verification tests have been carried out. The configuration of the test scenario for testing the voltage control of the DC network is described. The voltage control result is analyzed and the measured data and the results of the applications are verified for compatibility by comparing them with the results of an off-line simulation tool. Finally, the future direction of the development of technology for the operation of the DC grid is introduced.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6012
Author(s):  
Komal Naz ◽  
Fasiha Zainab ◽  
Khawaja Khalid Mehmood ◽  
Syed Basit Ali Bukhari ◽  
Hassan Abdullah Khalid ◽  
...  

Regarding different challenges, such as integration of green energy and autonomy of microgrid (MG) in the multi-microgrid (MMG) system, this paper presents an optimized and coordinated strategy for energy management of MMG systems that consider multiple scenarios of MGs. The proposed strategy operates at two optimization levels: local and global. At an MG level, each energy management system satisfies its local demand by utilizing all available resources via local optimization, and only sends surplus/deficit energy data signals to MMG level, which enhances customer privacy. Thereafter, at an MMG level, a central energy management system performs global optimization and selects optimized options from the available resources, which include charging/discharging energy to/from the community battery energy storage system, selling/buying power to/from other MGs, and trading with the grid. Two types of loads are considered in this model: sensitive and non-sensitive. The algorithm tries to make the system reliable by avoiding utmost load curtailment and prefers to shed non-sensitive loads over sensitive loads in the case of load shedding. To verify the robustness of the proposed scheme, several test cases are generated by Monte Carlo Simulations and simulated on the IEEE 33-bus distribution system. The results show the effectiveness of the proposed model.


Sign in / Sign up

Export Citation Format

Share Document