scholarly journals Analysis of Energy Accumulation and Dissipation of Coal Bursts

Energies ◽  
2018 ◽  
Vol 11 (7) ◽  
pp. 1816 ◽  
Author(s):  
Xiaohan Yang ◽  
Ting Ren ◽  
Alex Remennikov ◽  
Xueqiu He ◽  
Lihai Tan
2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xin Wei ◽  
Hao Hu ◽  
Yang Li

Energy accumulation and dissipation play an important role during the entire process of rock failure. Some flaws, such as preexisting holes, will influence energy accumulation and dissipation. In order to investigate the energy evolution of coal specimen with preexisting holes under uniaxial compression through numerical approaches, the particle simulation method was used in numerical simulations. In this paper, the energy evolution of coal specimen was theoretically analyzed, and the influence of different hole arrangement, such as diameter, spacing, angle, and number, on the evolution characteristics of energy was also discussed. At the same time, the arrangement of the artificial boreholes for preventing the rockburst was explored. The results show that, compared with the intact coal specimen, the change of diameter, spacing, angle, and the number of holes weakened the coal specimen’s capacity to store energy and release strain energy. When the diameter, the vertical distance, and relative angle of preexisting holes were 15 mm, 10∼15 mm, and 60°, respectively, the energy storage limit reached optimal value. For arrangement of the artificial boreholes, the diameter, spacing, and angle can be designed on the basis of those optimal values. This study has a guiding significance in designing the arrangement of the artificial boreholes for mitigation of rockburst.


2010 ◽  
Vol 7 (1) ◽  
pp. 102175 ◽  
Author(s):  
D. A. Toktogulova ◽  
M. N. Gusev ◽  
O. P. Maksimkin ◽  
F. A. Garner ◽  
Jeremy T. Busby ◽  
...  

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 422
Author(s):  
Jose M. Machorro-Lopez ◽  
Juan P. Amezquita-Sanchez ◽  
Martin Valtierra-Rodriguez ◽  
Francisco J. Carrion-Viramontes ◽  
Juan A. Quintana-Rodriguez ◽  
...  

Large civil structures such as bridges must be permanently monitored to ensure integrity and avoid collapses due to damage resulting in devastating human fatalities and economic losses. In this article, a wavelet-based method called the Wavelet Energy Accumulation Method (WEAM) is developed in order to detect, locate and quantify damage in vehicular bridges. The WEAM consists of measuring the vibration signals on different points along the bridge while a vehicle crosses it, then those signals and the corresponding ones of the healthy bridge are subtracted and the Continuous Wavelet Transform (CWT) is applied on both, the healthy and the subtracted signals, to obtain the corresponding diagrams, which provide a clue about where the damage is located; then, the border effects must be eliminated. Finally, the Wavelet Energy (WE) is obtained by calculating the area under the curve along the selected range of scale for each point of the bridge deck. The energy of a healthy bridge is low and flat, whereas for a damaged bridge there is a WE accumulation at the damage location. The Rio Papaloapan Bridge (RPB) is considered for this research and the results obtained numerically and experimentally are very promissory to apply this method and avoid accidents.


Sign in / Sign up

Export Citation Format

Share Document