damage location
Recently Published Documents


TOTAL DOCUMENTS

283
(FIVE YEARS 68)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 16 ◽  
pp. 261-273
Author(s):  
Poonam Mohan ◽  
A. P. Shashikala

Sloshing affects the intact and damage stability of the ship, which causes variation in dynamic metacentric height (GM) under critical load conditions. The transient flooding soon after the ship damage is analyzed, with floodwater accumulation in large space and causing the ship to suffer huge heel angles. The ship motion and stability changes when sloshing becomes high in partially flooded compartments. Most of the previous researches focus on the motion response of ship alone, hence the variation of stability due to sloshing is to be more critically studied. In the present study, three critical damage locations are identified and flooding through these locations are analyzed using the volume of fluids method. The method focus on finding damage ship motion response, flood water dynamics, and coupled dynamics of both. This is studied using the numerical method FLOW3D. Motion and stability behaviour will be different for different damage locations; hence portside, starboard-side, and aft-end bottom damage cases are considered. The effect of compartment shape and damage location on motion response and stability of the damaged ship is highlighted.


Sensors ◽  
2021 ◽  
Vol 22 (1) ◽  
pp. 239
Author(s):  
Tongfa Deng ◽  
Jinwen Huang ◽  
Maosen Cao ◽  
Dayang Li ◽  
Mahmoud Bayat

Curved beam bridges, whose line type is flexible and beautiful, are an indispensable bridge type in modern traffic engineering. Nevertheless, compared with linear bridges, curved beam bridges have more complex internal forces and deformation due to the curvature; therefore, this type of bridge is more likely to suffer damage in strong earthquakes. The occurrence of damage reduces the safety of bridges, and can even cause casualties and property loss. For this reason, it is of great significance to study the identification of seismic damage in curved beam bridges. However, there is currently little research on curved beam bridges. For this reason, this paper proposes a damage identification method based on wavelet packet norm entropy (WPNE) under seismic excitation. In this method, wavelet packet transform is adopted to highlight the damage singularity information, the norm entropy of wavelet coefficient is taken as a damage characteristic factor, and then the occurrence of damage is characterized by changes in the damage index. To verify the feasibility and effectiveness of this method, a finite element model of Curved Continuous Rigid-Frame Bridges (CCRFB) is established for the purposes of numerical simulation. The results show that the damage index based on WPNE can accurately identify the damage location and characterize the severity of damage; moreover, WPNE is more capable of performing damage location and providing early warning than the method based on wavelet packet energy. In addition, noise resistance analysis shows that WPNE is immune to noise interference to a certain extent. As long as a series of frequency bands with larger correlation coefficients are selected for WPNE calculation, independent noise reduction can be achieved.


2021 ◽  
Vol 2 (4) ◽  
pp. 996-1008
Author(s):  
Ahmed Bayoumi ◽  
Tobias Minten ◽  
Inka Mueller

The capabilities of detection and localization of damage in a structure, using a guided wave-based structural health monitoring (GWSHM) system, depend on the damage location and the chosen sensor array setup. This paper presents a novel approach to assess the reliability of an SHM system enabling to quantify localization accuracy. A two-step technique is developed to combine multiple paths to generate one probability of detection (POD) curve that provides information regarding the detection capability of an SHM system at a defined damage position. Moreover, a new method is presented to analyze localization accuracy. Established probability-based diagnostic imaging using a signal correlation algorithm is used to determine the damage location. The resultant output of the localization accuracy analysis is the smallest damage size at which a defined accuracy level can be reached at a determined location. The proposed methods for determination of detection probability and localization accuracy are applied to a plate-like CFRP structure with an omega stringer with artificial damage of different sizes at different locations. The results show that the location of the damage influences the sensitivity of detection and localization accuracy for the used detection and localization methods. Localization accuracy is enhanced as it becomes closer to the array’s center, but its detection sensitivity deteriorates.


2021 ◽  
Vol 27 (8) ◽  
pp. 617-636
Author(s):  
Guojun Deng ◽  
Zhixiang Zhou ◽  
Shuai Shao ◽  
Xi Chu ◽  
Peng Du

This study proposes the use of a high-speed camera as a holographic visual sensor to obtain the dense full-field dynamic parameters of the main beam of a bridge by the field of view through uniaxial rotation photography. Based on the basic principle that the frequency and mode of a structure are inherent characteristics, the mode coordinates obtained from each field of view are unified, normalized, and matched according to the same name pixels to obtain the dense fullfield dynamic parameters of the entire bridge. The frequency and first three order modes of a self-anchored suspension test bridge are collected by the method proposed in this study. The frequency comparison between the accelerometers and dial gauges is within 3%, and the mode shapes are more holographic and more realistic than those obtained by limited measuring points. In addition, the difference in the curvature mode under various damage conditions obtained by limited measurement points is compared with that obtained by the method proposed in this study. Results shows that the dense full-field modal curvature difference can reflect the change in the damage location even in a low order, which means the sensitivity of the change of damage location in low-order modal.


Author(s):  
J. Vorgerd ◽  
P. Tenberge ◽  
M. Joop

AbstractIncreasing demands on the power density of gearboxes require a precisive gear design regarding common failure mechanism. Particularly in turbo gearboxes with low-viscosity lubricants, the damage mechanism scuffing is relevant. In this paper an innovative test rig for the experimental investigation of scuffing at pitch line velocities up to 100 m/s is presented. The scuffing load capacity depending on the pitch line velocity of two gear design variants running at constant temperatures and lubricant conditions was investigated. Furthermore, the morphology of scuffing was investigated with regard to the damage location and the surface condition. Based on the experimental results, a simulation approach with an accuracy superior to the existing standards for calculating the scuffing load capacity of highspeed gears has been derived.


2021 ◽  
Vol 40 (3) ◽  
Author(s):  
Michael Siu Hey Leung ◽  
Joseph Corcoran

AbstractThere is a growing interest in using permanently installed sensors to monitor for defects in engineering components; the ability to collect real-time measurements is valuable when evaluating the structural integrity of the monitored component. However, a challenge in evaluating the detection capabilities of a permanently installed sensor arises from its fixed location and finite field-of-view, combined with the uncertainty in damage location. A probabilistic framework for evaluating the detection capabilities of a permanently installed sensor is thus proposed. By combining the spatial maps of sensor sensitivity obtained from model-assisted methods and probability of defect location obtained from structural mechanics, the expectation and confidence in the probability of detection (POD) can be estimated. The framework is demonstrated with four sensor-component combinations, and the results show the ability of the framework to characterise the detection capability of permanently installed sensors and quantify its performance with metrics such as the $${\mathrm{a}}_{90|95}$$ a 90 | 95 value (the defect size where there is 95% confidence of obtaining at least 90% POD), which is valuable for structural integrity assessments as a metric for the largest defect that may be present and undetected. The framework is thus valuable for optimising and qualifying monitoring system designs in real-life engineering applications.


2021 ◽  
Vol 53 (4) ◽  
pp. 210407
Author(s):  
Leonardo Gunawan ◽  
Muhammad Hamzah Farrasamulya ◽  
Andi Kuswoyo ◽  
Tatacipta Dirgantara

This paper presents the development process of a laboratory-scale Lamb wave-based structural health monitoring (SHM) system for laminated composite plates. Piezoelectric patches are used in pairs as actuator/sensor to evaluate the time of flight (TOF), i.e. the time difference between the transmitted/received signals of a damaged plate and those of a healthy plate. The damage detection scheme is enabled by means of evaluating the TOF from at least three actuator/receiver pairs. In this work, experiments were performed on two GFRP plates, one healthy and the other one with artificial delamination. Nine piezoelectric transducers were mounted on each plate and the detection of the delamination location was demonstrated, using 4 pairs and 20 pairs of actuators/sensors. The combinations of fewer and more actuators/sensor pairs both provided a damage location that was in good agreement with the artificial damage location. The developed SHM system using simple and affordable equipment is suitable for supporting fundamental studies on damage detection, such as the development of an algorithm for location detection using the optimum number of actuator/sensor pairs.


Sign in / Sign up

Export Citation Format

Share Document