scholarly journals Operation and Economic Assessment of Hybrid Refueling Station Considering Traffic Flow Information

Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1991 ◽  
Author(s):  
Suyang Zhou ◽  
Yuxuan Zhuang ◽  
Wei Gu ◽  
Zhi Wu

It is anticipated that the penetration of “Green-Energy” vehicles, including Electric Vehicle (EV), Fuel Cell Vehicle (FCV), and Natural Gas Vehicle (NGV) will keep increasing in next decades. The demand of refueling stations will correspondingly increase for refueling these “Green-Energy” vehicles. While such kinds of “Green-Energy” vehicles can provide both social and economic benefits, effective management of refueling various kinds of these vehicles is necessary to maintain vehicle users’ comfortabilities and refueling station’s return on investment. To tackle these problems, this paper proposes a novel energy management approach for hybrid refueling stations with EV chargers, Hydrogen pumps and gas pumps. Firstly, the detailed models of EV chargers, Hydrogen pumps with electrolyte and hydrogen tank, the gas pumps with gas tank, renewable resources, and battery energy storage systems are established. The forecasting methodologies for renewable energy, electricity price and the traffic flow are also presented to support the hybrid refueling station modeling and operation. Then, a management approach is adopted to manage the refueling various kinds of vehicles with considerations of the refueling station profitability. Finally, the proposed management approach is verified under four different kinds of tariffs- Economy-7, Economy-10, Flat-rate, and Real-Time Pricing (RTP), finding that the proposed management approach has the best performance under RTP tariff. The economic assessment of the Energy Storage System (ESS) is also performed. It is found that the ESS can make the saving up to $127 per day. Different sizes of gas storage tank are compared in the final section as well. The result shows that increasing the size of the tank does not bring attractive extra benefits with the consideration of the investment on enlarging the tank size.

Energies ◽  
2018 ◽  
Vol 11 (11) ◽  
pp. 3065 ◽  
Author(s):  
Monika Sandelic ◽  
Daniel-Ioan Stroe ◽  
Florin Iov

This paper focuses on the sizing of a battery energy storage system providing frequency containment reserves in a power system with a large wind power penetration level. A three-stage sizing methodology including the different aspect of battery energy storage system performance is proposed. The first stage includes time-domain simulations, investigating battery energy storage system dynamic response and its capability of providing frequency reserves. The second stage involves lifetime investigation. An economic assessment of the battery unit is carried out by performing the last stage. The main outcome of the proposed methodology is to choose the suitable battery energy storage system size for providing frequency containment reserve from augmented wind power plants while fulfilling relevant evaluation criteria imposed for each stage.


Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4718
Author(s):  
Pavani Ponnaganti ◽  
Birgitte Bak-Jensen ◽  
Brian Vejrum Wæhrens ◽  
Jesper Asmussen

With the growing application of green energy, the importance of effectively handling the volatile nature of these energy sources is also growing in order to ensure economic and operational viability. Accordingly, the main contribution of this work is to evaluate the revenue potential for wind parks with integrated storage systems in the day-ahead electricity markets using genetic algorithm. It is achieved by the concept of flexible charging–discharging of the Energy Storage System (ESS), taking advantage of the widespread electricity prices that are predicted using a feedforward-neural-network-based forecasting algorithm. In addition, the reactive power restrictions posed by grid code that are to be followed by the wind park are also considered as one of the constraints. Moreover, the profit obtained with a Battery Energy Storage System (BESS) is compared with that of a Thermal Energy Storage System (TESS). The proposed method gave more profitable results when utilizing BESS for energy arbitrage in day-ahead electricity markets than with TESS. Moreover, the availability of ESS at wind park has reduced the wind power curtailment.


Sign in / Sign up

Export Citation Format

Share Document