scholarly journals Transient Faults in Wind Energy Conversion Systems: Analysis, Modelling Methodologies and Remedies

Energies ◽  
2018 ◽  
Vol 11 (9) ◽  
pp. 2249 ◽  
Author(s):  
Ukashatu Abubakar ◽  
Saad Mekhilef ◽  
Hazlie Mokhlis ◽  
Mehdi Seyedmahmoudian ◽  
Ben Horan ◽  
...  

This paper presents an in-depth review of classical and state-of-the-art models for analysing the transient stability in wind energy conversion systems. Various transient simulation models for a number of wind turbine generator (WTG) configurations are introduced, under different disturbances. The mitigation is achieved, by manipulating the generator speed and power electronics control, whereas the protection is implemented using conventional, intelligent or digital relays for the safety of sensitive components, in case of transient fault occurrence. The various control systems in WECS are basically employed to transform and regulate the varying frequency, owing to the stochastic nature of wind speed, to the standard 50-Hz or 60-Hz frequency for coupling to an existing electrical utility grid. It has been observed that the control and protection schemes in wind energy systems are concurrently applied. Transient faults in WECSs are a dominant power quality problem especially in the doubly-fed induction generator (DFIG), and often classified as overcurrent or overvoltage transients. These transients are measured using the transient stability index and analysed using the EMTDC/PSCAD software. In addition, the inertia of the rotating masses of wind turbine generators is often characterized by a transient torque, which generates oscillations in power systems.

Author(s):  
Dr. R. C. Bansal ◽  
Dr. Ahmed F Zobaa ◽  
Dr. R. K. Saket

Design and successful operation of wind energy conversion systems (WECs) is a very complex task and requires the skills of many interdisciplinary skills, e.g., civil, mechanical, electrical and electronics, geography, aerospace, environmental etc. Performance of WECs depends upon subsystems like wind turbine (aerodynamic), gears (mechanical), generator (electrical); whereas the availability of wind resources are governed by the climatic conditions of the region concerned for which wind survey is extremely important to exploit wind energy. This paper presents a number of issues related to the power generation from WECs e.g. factors affecting wind power, their classification, choice of generators, main design considerations in wind turbine design, problems related with grid connections, wind-diesel autonomous hybrid power systems, reactive power control of wind system, environmental aspects of power generation, economics of wind power generation, and latest trend of wind power generation from off shore sites.


Author(s):  
Alok Pratap ◽  
Abdul Motin Howlader ◽  
Tomonobu Senjyu ◽  
Atsushi Yona ◽  
Naomitsu Urasaki ◽  
...  

Abstract This paper deals with controlling the output power smoothing of a wind energy conversion systems (WECS) by using permanent magnet synchronous generator (PMSG). It uses the inertia control of the wind turbine and DC-link voltage control. The PMSG is connected to the grid through a generator-side converter and a grid-side inverter based on AC-DC-AC methods. The generator-side converter is used to control the torque of the PMSG while the grid-side inverter is used to control DC-Link voltage and grid voltage. Fuzzy logic is implemented to determine the torque command by using inertia of wind turbine. The inputs of the fuzzy logic are given by the operating point of the rotational speed of the PMSG and the difference between the wind turbine torque and the generator torque. From the proposed method, the generator torque is smoothed and kinetic energy generated by the inertia of the wind turbine is used to smooth the power fluctuations of PMSG. Also, a stable operation of WECS is achieved during the system fault by using the chopper circuit in the DC-link circuit. The output power smoothing is achieved with stability and low cost. The effectiveness of the proposed method is verified by the numerical simulations.


Energies ◽  
2019 ◽  
Vol 12 (2) ◽  
pp. 286
Author(s):  
Ukashatu Abubakar ◽  
Saad Mekhilef ◽  
Hazlie Mokhlis ◽  
Mehdi Seyedmahmoudian ◽  
Ben Horan ◽  
...  

The authors would like to make the following addition to their paper [...]


Sign in / Sign up

Export Citation Format

Share Document