scholarly journals Standards-Compliant Chat-Based Middleware Platform for Smart Grid Management

Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 694 ◽  
Author(s):  
Hrvoje Keserica ◽  
Stjepan Sučić ◽  
Tomislav Capuder

The evolution of power systems towards the Smart Grid has introduced a significant number of unsolved issues degrading its accelerated deployment. The centralized control of distributed energy resources (DER) by utilizing virtual power plants is one of the essential Smart Grid ideas lacking plug and play capability. International standard IEC 61850 defines an architecture for describing Smart Grid subsystems. One of the main IEC 61850 contributions is a data model semantics describing different subsystems used for power systems production. The potential to utilize data semantics for describing DERs along with middleware technologies such as eXtensible Messaging and Presence Protocol (XMPP) can significantly decrease the integration timeframe of advanced power systems architectures such as virtual power plants and microgrids. This paper demonstrates the advantages of using the IEC 61850 standard along with the possibility of utilizing XMPP technology and how this affects new control architectures. Additionally, prototype implementation results are shown depending on the different communication infrastructure settings and application types used for DER control.

Energies ◽  
2019 ◽  
Vol 12 (12) ◽  
pp. 2398 ◽  
Author(s):  
Furquan Nadeem ◽  
Mohd Asim Aftab ◽  
S.M. Suhail Hussain ◽  
Ikbal Ali ◽  
Prashant Kumar Tiwari ◽  
...  

Communication plays a key role in the effective management of virtual power plants (VPPs). For effective and stable operation of VPPs, a reliable, secure, and standardized communication infrastructure is required. In the literature, efforts were made to develop this based on industry standards, such as the IEC 60870-5-104, OpenADR 2.0b and IEC 61850. Due to its global acceptance and strong object-oriented information models, IEC 61850 standard-based communication is preferred for smart grid operations, including VPPs. However, communication models based on IEC 61850 present cybersecurity and scalability challenges. To address this issue, this paper presents an eXtensible Message Presence Protocol (XMPP)-based IEC 61850 communication for VPPs. Firstly, a full mapping of IEC 61850 messages for VPP energy management is carried out. Secondly, XMPP-based single- and multiple-domain communications are demonstrated. Finally, a federation concept has been added to facilitate communication in multi-domain communication networks. These models show that a standard communication model can be implemented with IEC 61850 and XMPP, not only for VPPs but other wide-area communication implementations in smart grids. This not only facilitates plug-and-play (PnP) with easy component additions but secures smart grid communication against cyber-attacks.


Energies ◽  
2019 ◽  
Vol 13 (1) ◽  
pp. 67
Author(s):  
Rakkyung Ko ◽  
Sung-Kwan Joo

Virtual power plants (VPPs) have been widely researched to handle the unpredictability and variable nature of renewable energy sources. The distributed energy resources are aggregated to form into a virtual power plant and operate as a single generator from the perspective of a system operator. Power system operators often utilize the incentives to operate virtual power plants in desired ways. To maximize the revenue of virtual power plant operators, including its incentives, an optimal portfolio needs to be identified, because each renewable energy source has a different generation pattern. This study proposes a stochastic mixed-integer programming based distributed energy resource allocation method. The proposed method attempts to maximize the revenue of VPP operators considering market incentives. Furthermore, the uncertainty in the generation pattern of renewable energy sources is considered by the stochastic approach. Numerical results show the effectiveness of the proposed method.


2016 ◽  
Vol 98 (4) ◽  
pp. 347-354 ◽  
Author(s):  
Torsten Sowa ◽  
Maria Vasconcelos ◽  
Armin Schnettler ◽  
Michael Metzger ◽  
Alexander Hammer ◽  
...  

Author(s):  
D Pudjianto ◽  
C Ramsay ◽  
G Strbac

This article presents the concepts of the microgrid and the virtual power plant (VPP) as vehicles to facilitate cost-efficient integration of distributed energy resources (DERs) into the existing power system. These concepts were designed to enhance the system value and the controllability of DER and to provide frameworks for the development of interfaces among energy and ancillary service resources, system operators, and energy market participants. Through aggregation, DER access to energy markets is facilitated, and DER-based system support and ancillary services can be provided. By enabling this additional functionality, it is envisaged that system performance measured in the form of energy efficiency, power quality, security, and economic operation can be improved. In this paper, the technical and commercial functionality facilitated through the microgrid and VPP concepts is described. The paper concludes with case studies demonstrating the application of the concepts on a test system.


2018 ◽  
Vol 56 (1) ◽  
pp. 81
Author(s):  
Duc Huu Nguyen

Small distributed energy sources could be aggregated to form a virtual power plant (VPP) in order to overall improve technical and market issues. VPPs should be composed of several distributed batteries (DB) to solve the problem of intermittency due to wind and solar. This paper presents an approach to balance state of charge batteries. It is therefore to improve the lifetime of batteries in VPPs. According to the proposed method, the real-time SOC of DB will be tracking on the balancing SOC determined in VPP. During operation, the difference of SOC among DBs will be shrunk and finally the share of exchange power among DB is equal. Moreover, the duration time to achieve the balancing SOC can be determined by adjusting the exponent parameter of SOC in the presented function.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1410 ◽  
Author(s):  
Rakkyung Ko ◽  
Daeyoung Kang ◽  
Sung-Kwan Joo

As distributed energy resources (DERs) proliferate power systems, power grids face new challenges stemming from the variability and uncertainty of DERs. To address these problems, virtual power plants (VPPs) are established to aggregate DERs and manage them as single dispatchable and reliable resources. VPPs can participate in the day-ahead (DA) market and therefore require a bidding method that maximizes profits. It is also important to minimize the variability of VPP output during intra-day (ID) operations. This paper presents mixed integer quadratic programming-based scheduling methods for both DA market bidding and ID operation of VPPs, thus serving as a complete scheme for bidding-operation scheduling. Hourly bids are determined based on VPP revenue in the DA market bidding step, and the schedule of DERs is revised in the ID operation to minimize the impact of forecasting errors and maximize the incentives, thus reducing the variability and uncertainty of VPP output. The simulation results verify the effectiveness of the proposed methods through a comparison of daily revenue.


Sign in / Sign up

Export Citation Format

Share Document