scholarly journals Neural Network-Based Model Reference Adaptive System for Torque Ripple Reduction in Sensorless Poly Phase Induction Motor Drive

Energies ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 920 ◽  
Author(s):  
S. Usha ◽  
C. Subramani ◽  
Sanjeevikumar Padmanaban

This paper proposes the modified, extended Kalman filter, neural network-based model reference adaptive system and the modified observer technique to estimate the speed of a five-phase induction motor for sensorless drive. The proposed method is generated to achieve reduced speed deviation and reduced torque ripple efficiently. In inclusion, the result of speed performance and torque ripple under parameter variations were analysed and compared with the conventional direct synthesis method. The speed estimation of a five-phase motor in the four methods is analysed using MATLAB Simulink platform, and the optimum method is recognized using time domain analysis. It is observed that speed error is minimized by 60% and torque ripple is reduced by 75% in the proposed method. The hardware setup is carried out for the optimized method identified.

In these days, developments in the area of Induction Motor control is increasing significantly. Considerable advancements have been taken place in the area of Direct Torque Control (DTC), which is capable of providing quick dynamic response with respect to torque and flux. This paper presents a detailed survey on various latest techniques of DTC control of Induction Motor such as DTC-SVM with hysteresis band, DTCSVM with Model Predictive Control, DTC with sliding mode control, DTC with Model reference adaptive system (MRAS) et cetera. The simulation results are discussed for DTC-SVPWM topology and results obtained proves that this method has reduced torque ripple


2020 ◽  
Vol 5 (1) ◽  
pp. 199-213
Author(s):  
Soufien Hajji ◽  
Ramzi Ben Chehida ◽  
Hichem Zayani ◽  
Noomen Bouaziz ◽  
Youssef Agrebi Zorgani

AbstractThis article presents a new development of an indirect stator flux-oriented controller for sensorless speed induction motor drive utilising instantaneous and steady-state values, respectively, of a fictitious resistance symbolised as R_f. The dimension of the fictitious quantity, in this context, is the ohm, which is the difference between the stator d- and q-axis fictitious resistances. However, from the measurement of the stator voltage and currents of the machine, two independent resistance estimators are built. Therefore, the first is considered as a reference model of the induction machine (IM), and the second is considered as an adjustable model. Subsequently, the error between the states of the two models is used to drive a suitable adaptation mechanism that generates the estimation of the speed, for the adjustable model. Furthermore, the structure of the proposed estimator is free from stator resistance and eliminates the requirement of any flux computation. All the detailed simulation study is carried out in MATLAB/Simulink to validate the proposed method and to highlight the robustness and the stability of the proposed model reference adaptive system estimator.


Sign in / Sign up

Export Citation Format

Share Document