scholarly journals Bidirectional Power Flow Control of a Multi Input Converter for Energy Storage System

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3756 ◽  
Author(s):  
Tang ◽  
Lin

The objective of this paper is to propose a multi-input DC-DC converter with bidirectional power flow control capability. Compared to the traditional power converter, the multi-input converter (MIC) can save on the number of components and the circuit cost. Under normal conditions, the MIC is able to transfer energy from different input sources to the load. However, if the battery module is adopted, both the charging or discharging features should be considered. Therefore, the bidirectional power flow control of the MIC is necessary. On the other hand, because of the inconsistency characteristics of batteries, unbalanced circuit operation might occur whereby the circuit and the battery might be damaged. Therefore, dynamic current regulation strategies are developed for the MIC. Consequently, the proposed MIC circuit is able to achieve the bidirectional power flow control capability as well as control the input currents independently. Detailed circuit analysis and comprehensive mathematical derivation and of the proposed MIC will be presented in this paper. Finally, both simulation and experimental results obtained from a 500 W prototype circuit verify the performance and feasibility of the proposed bidirectional multi-input converter.

2021 ◽  
Author(s):  
B. M. Gavgani ◽  
T. Staessens ◽  
J. V. Damme ◽  
J. D. M. De Kooning ◽  
D. Bozalakov ◽  
...  

Author(s):  
Diogo Marinho ◽  
Miguel Chaves ◽  
Paulo Gambôa ◽  
José Lopes

Abstract The increasing use of electrical vehicles aroused the problem of batteries charging and the consequent interface with the power grid. Commercial charging solutions are mostly based on unidirectional power flow converters; however, bidirectional power flow converters are an interesting solution when considering smart microgrid applications, with benefits in efficient energy use. In this context, the paper presents a bidirectional power flow converter for grid-to-vehicle (G2V) or vehicle-to-grid (V2G) applications. The conversion system is based on a three-phase voltage source inverter (VSI), which assures the grid connection with a unitary power factor. The direct current (DC) bus of the voltage source inverter is connected to a DC/DC converter that controls the battery power flow. This conversion system can operate in G2V mode when charging the battery or in V2G mode when working as an energy storage system and the power flow is from the battery to the power grid. The conversion system model is presented as well as the control strategy proposed. Simulation and experimental results showing voltages and currents in the circuit are also presented.


Sign in / Sign up

Export Citation Format

Share Document