scholarly journals Exploring the Potentials of Artificial Neural Network Trained with Differential Evolution for Estimating Global Solar Radiation

Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2488
Author(s):  
Olubayo M. Babatunde ◽  
Josiah L. Munda ◽  
Yskandar Hamam

The use of solar powered systems is gradually getting more attention due to technological advances as well as cost effectiveness. Thus, solar powered systems like photovoltaic, concentrated solar power, concentrator photovoltaics, as well as hydrogen production systems are now commercially available for electricity generation. A major input to these systems is solar radiation data which is either partially available or not available in many remote communities. Predictive models can be used in estimating the amount and pattern of solar radiation in any location. This paper presents the use of evolutionary algorithm in improving the generalization capabilities and efficiency of multilayer feed-forward artificial neural network for the prediction of solar radiation using meteorological parameters as input. Meteorological parameters which included monthly average daily of: sunshine hour, solar radiation, maximum temperature and minimum temperature were used in the evaluation. Results show that the proposed model returned a RMSE of 1.1967, NSE of 0.8137 and R 2 of 0.8254.

Author(s):  
Adi Kurniawan ◽  
Anisa Harumwidiah

The estimation of the daily average global solar radiation is important since it increases the cost efficiency of solar power plant, especially in developing countries. Therefore, this study aims at developing a multi layer perceptron artificial neural network (ANN) to estimate the solar radiation in the city of Surabaya. To guide the study, seven (7) available meteorological parameters and the number of the month was applied as the input of network. The ANN was trained using five-years data of 2011-2015. Furthermore, the model was validated by calculating the mean average percentage error (MAPE) of the estimation for the years of 2016-2019. The results confirm that the aforementioned model is feasible to generate the estimation of daily average global solar radiation in Surabaya, indicated by MAPE of less than 15% for all testing years.


Sign in / Sign up

Export Citation Format

Share Document