scholarly journals Fuzzy Logic Energy Management Strategy of a Multiple Latent Heat Thermal Storage in a Small-Scale Concentrated Solar Power Plant

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2733 ◽  
Author(s):  
Roberto Tascioni ◽  
Alessia Arteconi ◽  
Luca Del Zotto ◽  
Luca Cioccolanti

Latent heat thermal energy storage (LHTES) systems allow us to effectively store and release the collected thermal energy from solar thermodynamic plants; however, room for improvements exists to increase their efficiency when in operation. For this reason, in this work, a smart management strategy of an innovative LHTES in a micro-scale concentrated solar combined heat and power plant is proposed and numerically investigated. The novel thermal storage system, as designed and built by the partners within the EU funded Innova MicroSolar project, is subdivided into six modules and consists of 3.8 tons of nitrate solar salt kNO3/NaNO3, whose melting temperature is in the range 216 ÷ 223 °C. In this study, the partitioning of the storage system on the performance of the integrated plant is evaluated by applying a smart energy management strategy based on a fuzzy logic approach. Compared to the single thermal energy storage (TES) configuration, the proposed strategy allows a reduction in storage thermal losses and improving of the plant’s overall efficiency especially in periods with limited solar irradiance. The yearly dynamic simulations carried out show that the electricity produced by the combined heat and power plant is increased by about 5%, while the defocus thermal losses in the solar plant are reduced by 30%.

2018 ◽  
Vol 225 ◽  
pp. 03022
Author(s):  
Nursyazwani Abdul Aziz ◽  
Nasrul Amri Mohd Amin ◽  
Mohd Shukry Abd Majid ◽  
Izzudin Zaman

Thermal energy storage (TES) system is one of the outstanding technologies available contributes for achieving sustainable energy demand. The energy storage system has been proven capable of narrowing down the energy mismatch between energy supply and demand. The thermal energy storage (TES) - buildings integration is expected to minimize the energy demand shortage and also offers for better energy management in building sector. This paper presents a state of art of the active and passive TES technologies integrated in the building sector. The integration method, advantages and disadvantages of both techniques were discussed. The TES for low energy building is inevitably needed. This study prescribes that the integration of TES system for both active and passive cooling techniques are proven to be beneficial towards a better energy management in buildings.


Sign in / Sign up

Export Citation Format

Share Document