scholarly journals Thermal energy storage (TES) technology for active and passive cooling in buildings: A Review

2018 ◽  
Vol 225 ◽  
pp. 03022
Author(s):  
Nursyazwani Abdul Aziz ◽  
Nasrul Amri Mohd Amin ◽  
Mohd Shukry Abd Majid ◽  
Izzudin Zaman

Thermal energy storage (TES) system is one of the outstanding technologies available contributes for achieving sustainable energy demand. The energy storage system has been proven capable of narrowing down the energy mismatch between energy supply and demand. The thermal energy storage (TES) - buildings integration is expected to minimize the energy demand shortage and also offers for better energy management in building sector. This paper presents a state of art of the active and passive TES technologies integrated in the building sector. The integration method, advantages and disadvantages of both techniques were discussed. The TES for low energy building is inevitably needed. This study prescribes that the integration of TES system for both active and passive cooling techniques are proven to be beneficial towards a better energy management in buildings.

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2733 ◽  
Author(s):  
Roberto Tascioni ◽  
Alessia Arteconi ◽  
Luca Del Zotto ◽  
Luca Cioccolanti

Latent heat thermal energy storage (LHTES) systems allow us to effectively store and release the collected thermal energy from solar thermodynamic plants; however, room for improvements exists to increase their efficiency when in operation. For this reason, in this work, a smart management strategy of an innovative LHTES in a micro-scale concentrated solar combined heat and power plant is proposed and numerically investigated. The novel thermal storage system, as designed and built by the partners within the EU funded Innova MicroSolar project, is subdivided into six modules and consists of 3.8 tons of nitrate solar salt kNO3/NaNO3, whose melting temperature is in the range 216 ÷ 223 °C. In this study, the partitioning of the storage system on the performance of the integrated plant is evaluated by applying a smart energy management strategy based on a fuzzy logic approach. Compared to the single thermal energy storage (TES) configuration, the proposed strategy allows a reduction in storage thermal losses and improving of the plant’s overall efficiency especially in periods with limited solar irradiance. The yearly dynamic simulations carried out show that the electricity produced by the combined heat and power plant is increased by about 5%, while the defocus thermal losses in the solar plant are reduced by 30%.


2020 ◽  
Vol 205 ◽  
pp. 07008
Author(s):  
Henok Hailemariam ◽  
Frank Wuttke

Closing the gap between supply and demand of energy is one of the biggest challenges of our era. In this aspect, thermal energy storage via borehole thermal energy storage (BTES) and sensible heat storage systems has recently emerged as a practical and encouraging alternative in satisfying the energy requirements of household and industrial applications. The majority of these heat energy storage systems are designed as part of the foundation or sub-structure of buildings with load bearing capabilities, hence their mechanical stability should be carefully studied prior to the design and operation phases of the heat storage system. In this study, the cyclic mechanical performance of a commercial cement-based porous heat storage material is analyzed under different amplitudes of cyclic loading and medium temperatures using a recently developed cyclic thermo-mechanical triaxial device. The results show a significant dependence of the cyclic mechanical behavior of the material, such as in the form of cyclic axial and accumulated plastic strains, on the different thermo-mechanical loading schemes.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
R. Meenakshi Reddy ◽  
N. Nallusamy ◽  
K. Hemachandra Reddy

Phase change material (PCM) based thermal energy storage (TES) systems are gaining increasing importance in recent years in order to reduce the gap between energy supply and demand in solar thermal applications. The present work investigates the effect of PCM capsule material on the performance of TES system during charging and discharging processes. The TES unit contains paraffin as PCM filled in spherical capsules and is integrated with flat plate solar collector. Water is used as sensible heat material as well as heat transfer fluid (HTF). The PCM capsules are of 68 mm diameter and are made using three different materials, namely, (i) high density polyethylene (HDPE), (ii) aluminum (Al), and (iii) mild steel (MS). The experimental investigation showed that the charging and recovery of stored energy are less affected by the spherical capsules material. The variables, like charging time and discharging quantity, are varied around 5% for the different capsule materials. Even though aluminum thermal conductivity is much higher than HDPE and mild steel, its influence on the performance of TES system is very low due to the very high internal heat resistance of PCM material stored in the spherical capsules.


2013 ◽  
Vol 135 (06) ◽  
pp. 36-41
Author(s):  
D. Yogi Goswami ◽  
Sudhakar Neti ◽  
Arun Muley ◽  
George Roe

This article highlights different research efforts to utilize thermal energy and thermal energy storage technologies. At several technical and panel sessions at the November ASME International Mechanical Engineering Congress and Exposition in Houston, there has been much discussion of cutting-edge work in thermal energy storage, including thermal energy storage materials, applications, and systems. Research into thermal energy storage is not limited to the confines of government and academia. Private companies are investigating whether they can incorporate thermal storage into some of their systems. Another potential advantage for solar thermal power is efficiency. Storing thermal energy as sensible heat is the most straightforward of the three methods, and the one that is the most widely deployed. A wide range of materials from simple concrete to synthetic oils has been tried for storing thermal energy. An energy storage system based on latent heat released as a material changes phase can be cost-effective. Thermal energy storage can become a game-changing technology wherever energy demand does not align exactly with energy supply. However, significant development challenges remain before these potential benefits can be realized.


2020 ◽  
Vol 10 (3) ◽  
pp. 1059 ◽  
Author(s):  
Seyed Soheil Mousavi Ajarostaghi ◽  
Kurosh Sedighi ◽  
Mojtaba Aghajani Delavar ◽  
Sébastien Poncet

There is a growing interest in sustainable energy sources for energy demand growth of power industries. To align the demand and the consumption of electrical energy, thermal energy storage appears as an efficient method. In the summer days, by using a cold storage system like ice storage, peaks of the energy usage shift to low-load hours of midnights. Here, we investigate the charging process (namely solidification) numerically in an ice-on-coil thermal energy storage configuration, where ice is formed around the coil or tube to store the chilled energy. The considered ice storage system is a shell and tube configuration, with three kinds of tubes including a U-shaped tube, a coil tube with an inner return line, and a coil tube with an outer return line. Advanced 3D unsteady simulations are achieved to determine the effects of tube type and position of the ice storage (horizontal or vertical) on the solidification process. Results indicate that using a coil tube speeds up the ice formation, as compared with the simple U-shaped tube. The coil tube with an outer return line exhibits a better performance (more produced ice), as compared with the coil tube with an inner return line. After 16 h of solidification, the coil tube with the outer return line has about 1.057% and 1.32% lower liquid fraction in comparison with the coil tube with the inner return line and U-shaped tube, respectively, for both positions (vertical and horizontal).


Sign in / Sign up

Export Citation Format

Share Document