scholarly journals Development of Optimal Conditioning Method to Improve Economic Efficiency of Polymer Electrolyte Membrane (PEM) Fuel Cells

Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2831 ◽  
Author(s):  
Min Soo Kim ◽  
Joo Hee Song ◽  
Dong Kyu Kim

This study presents an economical conditioning method for polymer electrolyte membrane (PEM) fuel cells through a parametric study investigating the factors affecting online conditioning methods. First, we compared the operating conditions between constant current (CC) mode and constant voltage (CV) mode conditioning to understand the effects of current and potential differences on conditioning. We found that CV mode conditioning is at least one hour faster at the same load. This is because unlike CV mode conditioning, which has a constant load over the entire range of the membrane electrode assembly (MEA), CC mode conditioning features current flow through the existing passage of the pre-activated triple phase boundary of the MEA so that the electronic load is not entirely used in the conditioning process. Second, the optimization of CV mode conditioning was conducted by controlling the conditioning temperature. Lastly, the economics of the proposed method were analyzed by comparing it with existing conditioning methods. Using this optimal conditioning method can reduce the consumption of hydrogen during conditioning by ~87.5% compared to previous methods. The findings from this study provide the means to lower the actual production cost of fuel cells, thereby ensuring market access.

Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5879
Author(s):  
Sethu Sundar Pethaiah ◽  
Kishor Kumar Sadasivuni ◽  
Arunkumar Jayakumar ◽  
Deepalekshmi Ponnamma ◽  
Chandra Sekhar Tiwary ◽  
...  

Hydrogen (H2) has attained significant benefits as an energy carrier due to its gross calorific value (GCV) and inherently clean operation. Thus, hydrogen as a fuel can lead to global sustainability. Conventional H2 production is predominantly through fossil fuels, and electrolysis is now identified to be most promising for H2 generation. This review describes the recent state of the art and challenges on ultra-pure H2 production through methanol electrolysis that incorporate polymer electrolyte membrane (PEM). It also discusses about the methanol electrochemical reforming catalysts as well as the impact of this process via PEM. The efficiency of H2 production depends on the different components of the PEM fuel cells, which are bipolar plates, current collector, and membrane electrode assembly. The efficiency also changes with the nature and type of the fuel, fuel/oxygen ratio, pressure, temperature, humidity, cell potential, and interfacial electronic level interaction between the redox levels of electrolyte and band gap edges of the semiconductor membranes. Diverse operating conditions such as concentration of methanol, cell temperature, catalyst loading, membrane thickness, and cell voltage that affect the performance are critically addressed. Comparison of various methanol electrolyzer systems are performed to validate the significance of methanol economy to match the future sustainable energy demands.


2021 ◽  
Author(s):  
Gokul Venugopalan ◽  
Deepra Bhattacharya ◽  
Subarna Kole ◽  
Cameron Ysidron ◽  
Polyxeni P. Angelopoulou ◽  
...  

Ionomer electrode binders are important materials for polymer electrolyte membrane (PEM) fuel cells and electrolyzers and have a profound impact on cell performance. Herein, we report the effect of two...


Sign in / Sign up

Export Citation Format

Share Document