scholarly journals Hybrid 1D + 2D Modelling for the Assessment of the Heat Transfer in the EU DEMO Water-Cooled Lithium-Lead Manifolds

Energies ◽  
2020 ◽  
Vol 13 (14) ◽  
pp. 3525
Author(s):  
Antonio Froio ◽  
Andrea Bertinetti ◽  
Alessandro Del Nevo ◽  
Laura Savoldi

The European demonstration fusion power reactor (EU DEMO) tokamak will be the first European fusion device to produce electricity and to include a breeding blanket (BB). In the framework of the design of the EU DEMO BB, the analysis of the heat transfer between the inlet and outlet manifold of the coolant is needed, to assess the actual cooling capability of the water entering the cooling channels, as well as the actual coolant outlet temperature from the machine. The complex, fully three-dimensional conjugate heat transfer problem is reduced here with a novel approach to a simpler one, decoupling the longitudinal and transverse scales for the heat transport by developing correlations for a conductive heat-transfer problem. While in the longitudinal direction a standard 1D model for the heat transport by fluid advection is adopted, a set of 2D finite elements analyses are run in the transverse direction, in order to lump the 2D heat conduction effects in suitable correlations. Such correlations are implemented in a 1D finite volume model with the 1D GEneral Tokamak THErmal-hydraulic Model (GETTHEM) code (Politecnico di Torino, Torino, Italy); the proposed approach thus reduces the 3D problem to a 1D one, allowing a parametric evaluation of the heat transfer in the entire blanket with a reduced computational cost. The deviation from nominal inlet and outlet temperature values, for the case of the Water-Cooled Lithium-Lead BB concept, is found to be always below 1.4 K and, in some cases, even to be beneficial. Consequently, the heat transfer among the manifolds at different temperatures can be safely (and conservatively) neglected.

1994 ◽  
Vol 116 (4) ◽  
pp. 521-527 ◽  
Author(s):  
J. W. Baish

A new model of steady-state heat transport in perfused tissue is presented. The key elements of the model are as follows: (1) a physiologically-based algorithm for simulating the geometry of a realistic vascular tree containing all thermally significant vessels in a tissue; (2) a means of solving the conjugate heat transfer problem of convection by the blood coupled to three-dimensional conduction in the extravascular tissue, and (3) a statistical interpretation of the calculated temperature field. This formulation is radically different from the widely used Pennes and Weinbaum-Jiji bio-heat transfer equations that predict a loosely defined local average tissue temperature from a local perfusion rate and a minimal representation of the vascular geometry. Instead, a probability density function for the tissue temperature is predicted, which carries information on the most probable temperature at a point and uncertainty in that temperature due to the proximity of thermally significant blood vessels. A sample implementation illustrates the dependence of the temperature distribution on the flow rate of the blood and the vascular geometry. The results show that the Pennes formulation of the bio-heat transfer equation accurately predicts the mean tissue temperature except when the arteries and veins are in closely spaced pairs. The model is useful for fundamental studies of tissue heat transport, and should extend readily to other forms of tissue transport including oxygen, nutrient, and drug transport.


Sign in / Sign up

Export Citation Format

Share Document