scholarly journals Multi-Step Ahead Short-Term Load Forecasting Using Hybrid Feature Selection and Improved Long Short-Term Memory Network

Energies ◽  
2020 ◽  
Vol 13 (16) ◽  
pp. 4121
Author(s):  
Shaoqian Pei ◽  
Hui Qin ◽  
Liqiang Yao ◽  
Yongqi Liu ◽  
Chao Wang ◽  
...  

Short-term load forecasting (STLF) plays an important role in the economic dispatch of power systems. Obtaining accurate short-term load can greatly improve the safety and economy of a power grid operation. In recent years, a large number of short-term load forecasting methods have been proposed. However, how to select the optimal feature set and accurately predict multi-step ahead short-term load still faces huge challenges. In this paper, a hybrid feature selection method is proposed, an Improved Long Short-Term Memory network (ILSTM) is applied to predict multi-step ahead load. This method firstly takes the influence of temperature, humidity, dew point, and date type on the load into consideration. Furthermore, the maximum information coefficient is used for the preliminary screening of historical load, and Max-Relevance and Min-Redundancy (mRMR) is employed for further feature selection. Finally, the selected feature set is considered as input of the model to perform multi-step ahead short-term load prediction by the Improved Long Short-Term Memory network. In order to verify the performance of the proposed model, two categories of contrast methods are applied: (1) comparing the model with hybrid feature selection and the model which does not adopt hybrid feature selection; (2) comparing different models including Long Short-Term Memory network (LSTM), Gated Recurrent Unit (GRU), and Support Vector Regression (SVR) using hybrid feature selection. The result of the experiments, which were developed during four periods in the Hubei Province, China, show that hybrid feature selection can improve the prediction accuracy of the model, and the proposed model can accurately predict the multi-step ahead load.

Energies ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5873
Author(s):  
Yuhong Xie ◽  
Yuzuru Ueda ◽  
Masakazu Sugiyama

Load forecasting is an essential task in the operation management of a power system. Electric power companies utilize short-term load forecasting (STLF) technology to make reasonable power generation plans. A forecasting model with low prediction errors helps reduce operating costs and risks for the operators. In recent years, machine learning has become one of the most popular technologies for load forecasting. In this paper, a two-stage STLF model based on long short-term memory (LSTM) and multilayer perceptron (MLP), which improves the forecasting accuracy over the entire time horizon, is proposed. In the first stage, a sequence-to-sequence (seq2seq) architecture, which can handle a multi-sequence of input to extract more features of historical data than that of single sequence, is used to make multistep predictions. In the second stage, the MLP is used for residual modification by perceiving other information that the LSTM cannot. To construct the model, we collected the electrical load, calendar, and meteorological records of Kanto region in Japan for four years. Unlike other LSTM-based hybrid architectures, the proposed model uses two independent neural networks instead of making the neural network deeper by concatenating a series of LSTM cells and convolutional neural networks (CNNs). Therefore, the proposed model is easy to be trained and more interpretable. The seq2seq module performs well in the first few hours of the predictions. The MLP inherits the advantage of the seq2seq module and improves the results by feeding artificially selected features both from historical data and information of the target day. Compared to the LSTM-AM model and single MLP model, the mean absolute percentage error (MAPE) of the proposed model decreases from 2.82% and 2.65% to 2%, respectively. The results demonstrate that the MLP helps improve the prediction accuracy of seq2seq module and the proposed model achieves better performance than other popular models. In addition, this paper also reveals the reason why the MLP achieves the improvement.


Author(s):  
Rio Indralaksono ◽  
Alif Maulana Firdaus ◽  
M. Abdul Wakhid ◽  
Novemi Uki Andreas ◽  
Galih Hendra Wibowo ◽  
...  

Author(s):  
Preethi D. ◽  
Neelu Khare

This chapter presents an ensemble-based feature selection with long short-term memory (LSTM) model. A deep recurrent learning model is proposed for classifying network intrusion. This model uses ensemble-based feature selection (EFS) for selecting the appropriate features from the dataset and long short-term memory for the classification of network intrusions. The EFS combines five feature selection techniques, namely information gain, gain ratio, chi-square, correlation-based feature selection, and symmetric uncertainty-based feature selection. The experiments were conducted using the standard benchmark NSL-KDD dataset and implemented using tensor flow and python. The proposed model is evaluated using the classification performance metrics and also compared with all the 41 features without any feature selection as well as with each individual feature selection technique and classified using LSTM. The performance study showed that the proposed model performs better, with 99.8% accuracy, with a higher detection and lower false alarm rates.


Sign in / Sign up

Export Citation Format

Share Document