scholarly journals Online Monitoring of Partial Discharges in Power Transformers Using Capacitive Coupling in the Tap of Condenser Bushings

Energies ◽  
2020 ◽  
Vol 13 (17) ◽  
pp. 4351
Author(s):  
Laerty Damião ◽  
João Guimarães ◽  
Guilherme Ferraz ◽  
Edson Bortoni ◽  
Ronaldo Rossi ◽  
...  

Failures in power transformers are one of the most serious occurrences in a power system. Thus, the monitoring of transformers and their ancillary equipment, such as bushings, is of great importance to improving the operational efficiency of these assets. In this context, this paper presents the development of a monitoring system for the measurement of partial discharges (PDs), which are a key parameter in the analysis of insulation condition. PD measurements were performed using the electrical method. For this purpose, a capacitive coupling device was developed for bushings that works as a sensor for high-frequency signals and also as a protection apparatus to guarantee the integrity of the bushings in cases of extreme events, such as lightning surges. In addition, a computational routine is presented that applies a digital filtering process followed by a proposed step for differentiating PDs from noises. For validation, the proposed system was subjected to laboratory tests and field applications, from which the viability of the project and the efficiency in detecting PDs were verified.

2014 ◽  
Vol 971-973 ◽  
pp. 1045-1050
Author(s):  
Wen Xing Sun ◽  
Zhao Hui Li ◽  
Shi Jie Cheng

Many successful applications for the online monitoring of the insulation condition for electric power transformers have been reported over last thirty years. However, false or unsolved alarms have been quite frequently generated by those condition monitoring systems. Failures and some occasionally catastrophic accidents involving transformers have still occurred. A highly reliable insulation condition online monitoring and real-time alarm system has been developed, to help resolve these problems. An electric power transformer has strongly linked mechanical, electrical, magnetic, chemical and thermal characteristics, and is also directly linked to circuit breakers and generators. Team Intelligence (TI) was employed to integrate all the monitoring modules of the various different aspects of the transformer into one unique system. This system could also be integrate with the condition monitoring systems of various linked facilities, such as the monitoring systems of the turbine and the generator in a Optimal Maintenance Information System for Hydropower Plant (HOMIS). Highly reliable monitoring and real-time alarms of transformer insulation condition could be achieved, due to highly coordinated and rapid response features. This system has been deployed in several hydropower plants. The industrial application examples are demonstrated.


Energies ◽  
2016 ◽  
Vol 9 (5) ◽  
pp. 383 ◽  
Author(s):  
Jian Li ◽  
Xudong Li ◽  
Lin Du ◽  
Min Cao ◽  
Guochao Qian

Author(s):  
Guilherme M. F. Ferraz ◽  
Laerty J. S. Damiao ◽  
Renato M. Capelini ◽  
Rogerio Salustiano

2007 ◽  
Vol 1 (05) ◽  
pp. 596-600 ◽  
Author(s):  
Giscard Franceire Cintra Veloso ◽  
◽  
Luiz Eduardo Borges da Silva ◽  
Germano Lambert-Torres

2021 ◽  
Vol 17 (2) ◽  
pp. 155014772199928
Author(s):  
Jiajia Song ◽  
Jinbo Zhang ◽  
Xinnan Fan

Partial discharges are the major cause of deterioration in the insulation characteristics of switchgears. Therefore, timely detection of partial discharge in switchgear and potential insulation faults is an urgent problem that needs to be addressed in the power supervision industry. In this study, a device was proposed for online monitoring of high-voltage switchgears based on pulse current method and ozone (O3) detection. The pulse current method obtains the PD signal by monitoring the phase holes on the switch indicator. Occurrence of a partial discharge in a certain phase leads to the production of a discharge pulse, which can be coupled out by a capacitive sensor. The current spectrum and the O3 produced by partial discharge were processed via fast Fourier transform for accurate diagnosis of the occurrence of partial discharge and its severity in switchgears. The proposed method allows for convenient acquisition of the partial discharge signal, simple installation of the device, and realization with inexpensive sensors.


Sign in / Sign up

Export Citation Format

Share Document