capacitive sensor
Recently Published Documents


TOTAL DOCUMENTS

1009
(FIVE YEARS 277)

H-INDEX

34
(FIVE YEARS 7)

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 622
Author(s):  
Yuting Zhu ◽  
Tim Giffney ◽  
Kean Aw

Dielectric elastomer (DE) sensors have been widely used in a wide variety of applications, such as in robotic hands, wearable sensors, rehabilitation devices, etc. A unique dielectric elastomer-based multimodal capacitive sensor has been developed to quantify the pressure and the location of any touch simultaneously. This multimodal sensor is a soft, flexible, and stretchable dielectric elastomer (DE) capacitive pressure mat that is composed of a multi-layer soft and stretchy DE sensor. The top layer measures the applied pressure, while the underlying sensor array enables location identification. The sensor is placed on a passive elastomeric substrate in order to increase deformation and optimize the sensor’s sensitivity. This DE multimodal capacitive sensor, with pressure and localization capability, paves the way for further development with potential applications in bio-mechatronics technology and other humanoid devices. The sensor design could be useful for robotic and other applications, such as fruit picking or as a bio-instrument for the diabetic insole.


Author(s):  
Jing Wang ◽  
Longwei Li ◽  
Lanshuang Zhang ◽  
Panpan Zhang ◽  
Xiong Pu

Abstract Highly sensitive soft sensors play key roles in flexible electronics, which therefore have attracted much attention in recent years. Herein, we report a flexible capacitive pressure sensor with high sensitivity by using engineered micro-patterned porous polydimethylsiloxane (PDMS) dielectric layer through an environmental-friendly fabrication procedure. The porous structure is formed by evaporation of emulsified water droplets during PDMS curing process, while the micro-patterned structure is obtained via molding on sandpaper. Impressively, this structure renders the capacitive sensor with a high sensitivity up to 143.5 MPa-1 at the pressure range of 0.068~150 kPa and excellent anti-fatigue performance over 20,000 cycles. Meanwhile, the sensor can distinguish different motions of the same person or different people doing the same action. Our work illustrates the promising application prospects of this flexible pressure sensor for the security field or human motion monitoring area.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 445
Author(s):  
Kai-Uwe Zirk ◽  
Manuel Olze ◽  
Harald Pötzschke

This article presents a novel method for the detection of biofilms based on a heatable, capacitive sensor structure (CSS). Biofilms are capable of strongly binding large amounts of water to their extracellular biopolymer matrix, which is detectable via its dielectric properties. A main challenge is to determine the difference between the inherent occurring presence of moisture in the ecosystem, which is necessary to form a biofilm and an actual formed biofilm. Therefore, the CSS is carefully heated to evaporate unbound surface moisture and determine whether there is a remaining residual alternation of the capacitance in comparison to the dry state. As a reproduceable substitute for complex, real biofilms, a hygroscopic, medical hydrogel-based on polysaccharides was used and applied by spray coating. Printed circuit boards (PCB) in different geometries and materials were used as CSS and compared in terms of their performance. A layer-thickness of 20 µm for the hydrogel coating to be sufficiently detected was defined as a realistic condition based on known values for real biofilms cited in literature. For this thickness a double-meander structure proves to be preferable over interdigitating and spiral geometries. It does offer a 30% lower, yet sufficient sensitivity, but shows advantages in manufacturing (one layer instead of two) and conductive heating capability. In the experiments, free water showed virtually no residual change, while the hydrogel-coated CSS still shows an approx. 300% higher value compared to a dry capacity. Yet, the overall small capacities of about 6–30 pF in dry state are difficult to measure and therefore sensitive to interferences and noise, which results in a high deviation. The principle of measurement can be evaluated as proofed by the carried out experiments, though offering room for improvement in the design of the study. The new method might be especially useful for pipes (e.g., hydrodynamically ineffective sensors installed in a pipe wall) if they at least are not permanently flooded with an aqueous medium, but can occasionally dry. If the internal surface is still only moist, it can be dried by initial heating.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7813
Author(s):  
Saima Qureshi ◽  
Goran M. Stojanović ◽  
Mitar Simić ◽  
Varun Jeoti ◽  
Najeebullah Lashari ◽  
...  

Wearable sensors have become part of our daily life for health monitoring. The detection of moisture content is critical for many applications. In the present research, textile-based embroidered sensors were developed that can be integrated with a bandage for wound management purposes. The sensor comprised an interdigitated electrode embroidered on a cotton substrate with silver-tech 150 and HC 12 threads, respectively, that have silver coated continuous filaments and 100% polyamide with silver-plated yarn. The said sensor is a capacitive sensor with some leakage. The change in the dielectric constant of the substrate as a result of moisture affects the value of capacitance and, thus, the admittance of the sensor. The moisture sensor’s operation is verified by measuring its admittance at 1 MHz and the change in moisture level (1–50) µL. It is observed that the sensitivity of both sensors is comparable. The identically fabricated sensors show similar response and sensitivity while wash test shows the stability of sensor after washing. The developed sensor is also able to detect the moisture caused by both artificial sweat and blood serum, which will be of value in developing new sensors tomorrow for smart wound-dressing applications.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Ruzhan Qin ◽  
Mingjun Hu ◽  
Xin Li ◽  
Te Liang ◽  
Haoyi Tan ◽  
...  

AbstractThe development of flexible capacitive pressure sensors has wide application prospects in the fields of electronic skin and intelligent wearable electronic devices, but it is still a great challenge to fabricate capacitive sensors with high sensitivity. Few reports have considered the use of interdigital electrode structures to improve the sensitivity of capacitive pressure sensors. In this work, a new strategy for the fabrication of a high-performance capacitive flexible pressure sensor based on MXene/polyvinylpyrrolidone (PVP) by an interdigital electrode is reported. By increasing the number of interdigital electrodes and selecting the appropriate dielectric layer, the sensitivity of the capacitive sensor can be improved. The capacitive sensor based on MXene/PVP here has a high sensitivity (~1.25 kPa−1), low detection limit (~0.6 Pa), wide sensing range (up to 294 kPa), fast response and recovery times (~30/15 ms) and mechanical stability of 10000 cycles. The presented sensor here can be used for various pressure detection applications, such as finger pressing, wrist pulse measuring, breathing, swallowing and speech recognition. This work provides a new method of using interdigital electrodes to fabricate a highly sensitive capacitive sensor with very promising application prospects in flexible sensors and wearable electronics.


Author(s):  
N. S. Pshchelko ◽  
I. M. Sokolova ◽  
D. A. Chigirev

The article deals with the issues related to the technical implementation of environmental sensing using capacitive sensors. It proposes a design of a capacitive sensor of a planar type, and studies physical principles of its operation. The operation of the sensor in two main modes is analyzed: 1) determination of the distance to the object at known electrophysical characteristics of the object; 2) determination of the electrophysical characteristics of the object at a known distance to it. The article provides data of direct measurements of the sensor capacitance and its output signal level under various conditions.


Micromachines ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1430
Author(s):  
Elliott C. Leinauer ◽  
Hyunmin M. Kim ◽  
Jae W. Kwon

This work presents a polymer-based tactile capacitive sensor capable of measuring joint reaction forces of reverse total shoulder arthroplasty (RTSA). The capacitive sensor contains a polydimethylsiloxane (PDMS) dielectric layer with an array of electrodes. The sensor was designed in such a way that four components of glenohumeral contact forces can be quantified to help ensure proper soft tissue tensioning during the procedure. Fabricated using soft lithography, the sensor has a loading time of approximately 400 ms when a 14.13 kPa load is applied and has a sensitivity of 1.24 × 10−3 pF/kPa at a load of 1649 kPa. A replica RTSA prothesis was 3D printed, and the sensor was mounted inside the humeral cap. Four static right shoulder positions were tested, and the results provided an intuitive graphical description of the pressure distribution across four quadrants of the glenohumeral joint contact surface. It may help clinicians choose a right implant size and offset that best fit a patient’s anatomy and reduce postoperative biomechanical complications such as dislocation and stress fracture of the scapula.


Sign in / Sign up

Export Citation Format

Share Document