scholarly journals A Comprehensive Review on Classification, Energy Management Strategy, and Control Algorithm for Hybrid Electric Vehicles

Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5355
Author(s):  
Qicheng Xue ◽  
Xin Zhang ◽  
Teng Teng ◽  
Jibao Zhang ◽  
Zhiyuan Feng ◽  
...  

The energy management strategy (EMS) and control algorithm of a hybrid electric vehicle (HEV) directly determine its energy efficiency, control effect, and system reliability. For a certain configuration of an HEV powertrain, the challenge is to develop an efficient EMS and an appropriate control algorithm to satisfy a variety of development objectives while not reducing vehicle performance. In this research, a comprehensive, multi-level classification for HEVs is introduced in detail from the aspects of the degree of hybridization (DoH), the position of the motor, the components and configurations of the powertrain, and whether or not the HEV is charged by external power. The principle and research status of EMSs for each type of HEV are summarized and reviewed. Additionally, the EMSs and control algorithms of HEVs are compared and analyzed from the perspectives of characteristics, applications, real-time abilities, and historical development. Finally, some discussions about potential directions and challenges for future research on the energy management systems of HEVs are presented. This review is expected to bring contribution to the development of efficient, intelligent, and advanced EMSs for future HEV energy management systems.

2018 ◽  
Vol 10 (9) ◽  
pp. 168781401879776 ◽  
Author(s):  
Jianjun Hu ◽  
Zhihua Hu ◽  
Xiyuan Niu ◽  
Qin Bai

To improve the fuel efficiency and battery life-span of plug-in hybrid electric vehicle, the energy management strategy considering battery life decay is proposed. This strategy is optimized by genetic algorithm, aiming to reduce the fuel consumption and battery life decay of plug-in hybrid electric vehicle. Besides, to acquire better drive-cycle adaptability, driving patterns are recognized with probabilistic neural network. The standard driving cycles are divided into urban congestion cycle, highway cycle, and urban suburban cycle; the optimized energy management strategies in three representative driving cycles are established; meanwhile, a comprehensive test driving cycle is constructed to verify the proposed strategies. The results show that adopting the optimized control strategies, fuel consumption, and battery’s life decay drop by 1.9% and 3.2%, respectively. While using the drive-cycle recognition, the features of different driving cycles can be identified, and based on it, the vehicle can choose appropriate control strategy in different driving conditions. In the comprehensive test driving cycle, after recognizing driving cycles, fuel consumption and battery’s life decay drop by 8.6% and 0.3%, respectively.


Energy ◽  
2020 ◽  
Vol 197 ◽  
pp. 117192 ◽  
Author(s):  
Yuanjian Zhang ◽  
Liang Chu ◽  
Zicheng Fu ◽  
Nan Xu ◽  
Chong Guo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document