scholarly journals Analysis of a Multi-Timescale Framework for the Voltage Control of Active Distribution Grids

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1965
Author(s):  
Edoardo De Din ◽  
Fabian Bigalke ◽  
Marco Pau ◽  
Ferdinanda Ponci ◽  
Antonello Monti

The development of strategies for distribution network management is an essential element for increasing network performance and reducing the upgrade of physical assets. This paper analyzes a multi-timescale framework to control the voltage of distribution grids characterized by a high penetration of renewables. The multi-timescale solution is based on three levels that coordinate Distributed Generation (DG) and Energy Storage Systems (ESSs), but differs in terms of the timescales and objectives of the control levels. Realistic load and photovoltaic generation profiles were created for cloudy and clean sky conditions to evaluate the performance features of the multi-timescale framework. The proposed solution was also compared with different frameworks featuring two of the three levels, to highlight the contribution of the combination of the three levels in achieving the best performance.

Electronics ◽  
2021 ◽  
Vol 10 (11) ◽  
pp. 1261
Author(s):  
Dina Emara ◽  
Mohamed Ezzat ◽  
Almoataz Y. Abdelaziz ◽  
Karar Mahmoud ◽  
Matti Lehtonen ◽  
...  

Recently, the penetration of energy storage systems and photovoltaics has been significantly expanded worldwide. In this regard, this paper presents the enhanced operation and control of DC microgrid systems, which are based on photovoltaic modules, battery storage systems, and DC load. DC–DC and DC–AC converters are coordinated and controlled to achieve DC voltage stability in the microgrid. To achieve such an ambitious target, the system is widely operated in two different modes: stand-alone and grid-connected modes. The novel control strategy enables maximum power generation from the photovoltaic system across different techniques for operating the microgrid. Six different cases are simulated and analyzed using the MATLAB/Simulink platform while varying irradiance levels and consequently varying photovoltaic generation. The proposed system achieves voltage and power stability at different load demands. It is illustrated that the grid-tied mode of operation regulated by voltage source converter control offers more stability than the islanded mode. In general, the proposed battery converter control introduces a stable operation and regulated DC voltage but with few voltage spikes. The merit of the integrated DC microgrid with batteries is to attain further flexibility and reliability through balancing power demand and generation. The simulation results also show the system can operate properly in normal or abnormal cases, thanks to the proposed control strategy, which can regulate the voltage stability of the DC bus in the microgrid with energy storage systems and photovoltaics.


2019 ◽  
Vol 11 (19) ◽  
pp. 5472 ◽  
Author(s):  
Roldán-Porta ◽  
Roldán-Blay ◽  
Escrivá-Escrivá ◽  
Quiles

The development of microgrids is of great interest to facilitate the integration of distributed generation in electricity networks, improving the sustainability of energy production. Microgrids in DC (DC-MG) provide advantages for the use of some types of renewable generation and energy storage systems, such as batteries. In this article, a possible practical implementation of an isolated DC-MG for residential use with a cooperative operation of the different nodes is proposed. The main criterion is to achieve a very simple design with only primary control in a residential area. This application achieves a simple system, with low implementation costs, in which each user has autonomy but benefits from the support of the other users connected to the microgrid, which improves its reliability. The description of the elements necessary to create this cooperative system is one of the contributions of the work. Another important contribution is the analysis of the operation of the microgrid as a whole, where each node can be, arbitrarily, a consumer or an energy generator. The proposed structures could promote the use of small distributed generation and energy storage systems as the basis for a new paradigm of a more sustainable electricity grid of the future.


Sign in / Sign up

Export Citation Format

Share Document