scholarly journals A Synergetic Sliding Mode Controller Applied to Direct Field-Oriented Control of Induction Generator-Based Variable Speed Dual-Rotor Wind Turbines

Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4437
Author(s):  
Habib Benbouhenni ◽  
Nicu Bizon

A synergetic sliding mode (SSM) approach is designed to address the drawbacks of the direct field-oriented control (DFOC) of the induction generators (IGs) integrated into variable speed dual-rotor wind power (DRWP) systems with the maximum power point tracking (MPPT) technique. Using SSM controllers in the DFOC strategy, the active power, electromagnetic torque, and reactive power ripples are reduced compared to traditional DFOC using proportional-integral (PI) controllers. This proposed strategy, associated with SSM controllers, produces efficient state estimation. The effectiveness of the designed DFOC strategy has been evaluated on variable speed DRWP systems with the MPPT technique.

2021 ◽  
Vol 13 (6) ◽  
pp. 3037
Author(s):  
Carlos Muñoz ◽  
Marco Rivera ◽  
Ariel Villalón ◽  
Carlos R. Baier ◽  
Javier Muñoz ◽  
...  

The high increase of renewable energy sources and the increment of distributed generation in the electrical grid has made them complex and of variable parameters, causing potential stability problems to the PI controllers. In this document, a control strategy for power injection to the electrical system from photovoltaic plants through a voltage source inverter two-level-type (VSI-2L) converter is proposed. The algorithm combines a current-based maximum power point-tracking (Current-Based MPPT) with model predictive control (MPC) strategy, allowing avoidance of the use of PI controllers and lowering of the dependence of high-capacitive value condensers. The sections of this paper describe the parts of the system, control algorithms, and simulated and experimental results that allow observation of the behavior of the proposed strategy.


2018 ◽  
Vol 41 (2) ◽  
pp. 447-457 ◽  
Author(s):  
Aghiles Ardjal ◽  
Rachid Mansouri ◽  
Maamar Bettayeb

This paper deals with a nonlinear control algorithm based on a sliding mode theory to reach the maximum power point tracking of a variable-speed wind energy conversion system. The proposed method allows us to combine the sliding mode and fractional-order theory. The fractional-order component of the control law is introduced by a sliding surface. In order to validate this controller, fractional and integer sliding modes are developed. The proposed fractional-order sliding mode control law is tested in a Simulink/Matlab environment. The simulation results show the effectiveness of the proposed scheme, suppression of the chattering phenomenon and robustness of the proposed controller compared to the integer sliding mode control law.


2019 ◽  
Vol 52 (7-8) ◽  
pp. 896-912
Author(s):  
Ravichandran Chinnappan ◽  
Premalatha Logamani ◽  
Rengaraj Ramasubbu

This article presents a reliable and efficient photovoltaic sliding mode voltage-controlled maximum power point tracking DC-DC converter–active power filter integration system to supply real power to grid. This integrated active power filter system performs power quality enhancement features to compensate current harmonics to make distortion-free grid supply current and reactive power employing nonlinear loads. The proposed proportional–integral–derivative–based sliding mode controller is designed with fixed-frequency pulse-width modulation based on equivalent control approach. The main objective of this paper is to design a photovoltaic system with a new sliding surface to force the photovoltaic voltage to follow the reference maximum power point voltage with the alleviation of slow transient response and disadvantages of chattering effects of variable-frequency hysteresis modulation sliding mode controller–maximum power point tracking. The perturbations caused by the uncertainties in climatic conditions and converter output bulk oscillations during grid integration are also mitigated. The features of the proposed photovoltaic–active power filter integration system are confirmed at different operating conditions through PSIM simulation software, and its performance is also compared with a conventional variable-frequency sliding mode-controlled maximum power point tracking. The obtained simulation and experimental results give good dynamic response under various operating conditions of environmental and local load conditions.


Sign in / Sign up

Export Citation Format

Share Document