scholarly journals Optimal Sizing of Hybrid Microgrid in a Remote Island Considering Advanced Direct Load Control for Demand Response and Low Carbon Emission

Energies ◽  
2021 ◽  
Vol 14 (22) ◽  
pp. 7599
Author(s):  
Homeyra Akter ◽  
Harun Or Rashid Howlader ◽  
Ahmed Y. Saber ◽  
Paras Mandal ◽  
Hiroshi Takahashi ◽  
...  

Optimal sizing of the power system can drastically reduce the total cost, which is challenging due to the fluctuation in output power of RE (primarily wind and solar) and pollution from thermal generators. The main purpose of this study is to cope with this output power uncertainty of renewables by considering ADLC, residential PV, and BESS at the lowest cost and with the least amount of carbon emission, while putting less burden on consumers by minimizing the IL. This paper optimizes the cost and carbon emission function of a hybrid energy system comprising PV, WG, BESS, and DG at Aguni Island, Japan, using a multi-objective optimization model. To solve the proposed problem in the presence of ADLC, the ϵ-constraint method and MILP are utilized. After obtaining all possible solutions, the FSM selects the best possible solution among all solutions. The result shows that while case 1 has a lower energy cost than the other cases, the quantity of IL is quite significant, putting customers in a burden. In case 2 and case 3, the total energy cost is 11.23% and 10% higher than case 1, respectively, but the sum of the IL is 99% and 95.96% lower than case 1 as the ADLC is applied only for the consumers who have residential PV and BESS, which can reflect the importance of residential PV and BESS. The total cost of case 3 is 1.72% lower than case 2, but IL is higher because sometimes home PV power will be used to charge the home BESS.

2021 ◽  
Author(s):  
Homeyra Akter ◽  
Harun Or Rashid Howlader ◽  
Ahmed Y. Saber ◽  
Ashraf M. Hemeida ◽  
Hiroshi Takahashi ◽  
...  

2018 ◽  
Vol 2018 ◽  
pp. 1-21 ◽  
Author(s):  
Longlong Leng ◽  
Yanwei Zhao ◽  
Zheng Wang ◽  
Hongwei Wang ◽  
Jingling Zhang

In this paper, we consider a variant of the location-routing problem (LRP), namely, the regional low-carbon LRP with reality constraint conditions (RLCLRPRCC), which is characterized by clients and depots that located in nested zones with different speed limits. The RLCLRPRCC aims at reducing the logistics total cost and carbon emission and improving clients satisfactory by replacing the travel distance/time with fuel consumption and carbon emission costs under considering heterogeneous fleet, simultaneous pickup and delivery, and hard time windows. Aiming at this project, a novel approach is proposed: hyperheuristic (HH), which manipulates the space, consisted of a fixed pool of simple operators such as “shift” and “swap” for directly modifying the space of solutions. In proposed framework of HH, a kind of shared mechanism-based self-adaptive selection strategy and self-adaptive acceptance criterion are developed to improve its performance, accelerate convergence, and improve algorithm accuracy. The results show that the proposed HH effectively solves LRP/LRPSPD/RLCLRPRCC within reasonable computing time and the proposed mathematical model can reduce 2.6% logistics total cost, 27.6% carbon emission/fuel consumption, and 13.6% travel distance. Additionally, several managerial insights are presented for logistics enterprises to plan and design the distribution network by extensively analyzing the effects of various problem parameters such as depot cost and location, clients’ distribution, heterogeneous vehicles, and time windows allowance, on the key performance indicators, including fuel consumption, carbon emissions, operational costs, travel distance, and time.


2019 ◽  
Vol 14 (23) ◽  
pp. 8769-8778
Author(s):  
Okhuegbe Samuel Nosakhale ◽  
Charles Mwaniki ◽  
Mudathir Funsho Akorede

Electronics ◽  
2021 ◽  
Vol 10 (21) ◽  
pp. 2677
Author(s):  
Feng Li ◽  
Shirong Lu ◽  
Chunwei Cao ◽  
Jiang Feng

To “bring carbon emissions to a peak by 2030 and to be carbon-neutral by 2060”, the role of renewable energy consumption and carbon emission trading are promoted. As an important energy consumer of regional energy system, it is necessary for integrated energy system to ensure the low-carbon economic operation of the system. Combined with the responsibility of renewable energy consumption, green certificate trading mechanism, carbon emission rights trading, and China Certified Emission Reduction (CCER), a regional integrated energy system operation optimization model was proposed. The model aims to minimize the total cost of the system, which included with electric bus, thermal bus, and cold bus. Setting different scenarios for the given example, the results show that the optimized model could effectively reduce the operating costs of the system. Moreover, the results also provide an effective reference for the system’s economic and low-carbon operation.


2020 ◽  
Vol 45 (1) ◽  
pp. 605-625
Author(s):  
Fahd A. Alturki ◽  
Abdullrahman A. Al‐Shamma'a ◽  
Hassan M. H. Farh ◽  
Khalil AlSharabi

Sign in / Sign up

Export Citation Format

Share Document