scholarly journals Real-Time Monitoring of the Vacuum Degree Based on the Partial Discharge and an Insulation Supplement Design for a Distribution Class Vacuum Interrupter

Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7891
Author(s):  
Seungmin Bang ◽  
Hyun-Woo Lee ◽  
Bang-Wook Lee

The internal pressure of a vacuum interrupter (VI) is increased by arc heat, ceramic cracking, gas leakage, and manufacturing defects. Accordingly, the dielectric strength of VI rapidly decreases. To improve the reliability of power transmission, efficient maintenance through the real-time monitoring of the vacuum degree is essential. However, real-time monitoring of the vacuum degree is difficult, and related research is scarce. Additionally, due to the insulation problems of this technology, there are few commercially available products. Therefore, this paper proposes a method for real-time monitoring of the vacuum degree and an insulation supplement design for a distribution class VI. First, dielectric experiments were conducted to identify the section in which the dielectric strength of the VI rapidly decreased according to the vacuum degree. Second, for real-time monitoring of the VI, several factors were proposed through the partial discharge in the VI, while the capacitance characteristics of the VI were calculated to improve the signal of the internal partial discharge. Finally, to supplement the dielectric problems of the solid insulation high voltage apparatus that occur when real-time monitoring technology is applied, the insulation supplement design was performed through the finite element method (FEM).

2013 ◽  
Vol 313-314 ◽  
pp. 617-620
Author(s):  
Xiang Yu Kong ◽  
Jin Lan Liu ◽  
Wei Qin Liu ◽  
Shu Jun Yao

In this paper, the cut technology of anomaly flow for gas meter by mainly real-time monitoring the flow is studied and the definition method for anomaly flow of indoor gas leakage is introduced. Full range safety intelligent cutting function is increased on the indoor gas meter, which can raise the safety of indoor gas facilities and residents gas consumption. It is proved that the technology is an effective way to prevent the happening of gas accidents and reduce the frequency severity of the gas accidents.


2006 ◽  
Vol 175 (4S) ◽  
pp. 521-521
Author(s):  
Motoaki Saito ◽  
Tomoharu Kono ◽  
Yukako Kinoshita ◽  
Itaru Satoh ◽  
Keisuke Satoh

2001 ◽  
Vol 11 (PR3) ◽  
pp. Pr3-1175-Pr3-1182 ◽  
Author(s):  
M. Losurdo ◽  
A. Grimaldi ◽  
M. Giangregorio ◽  
P. Capezzuto ◽  
G. Bruno

Sign in / Sign up

Export Citation Format

Share Document