vacuum level
Recently Published Documents


TOTAL DOCUMENTS

188
(FIVE YEARS 29)

H-INDEX

25
(FIVE YEARS 1)

Dairy ◽  
2022 ◽  
Vol 3 (1) ◽  
pp. 29-46
Author(s):  
Shehadeh Kaskous

Milking machine design and performance are directly related to the milkability of sheep and goats, with the aim of milking quickly, completely and gently. This leads to an increase in the milk yield with improved quality, and the maintenance of healthy udders. The aim of this study was to carry out laboratory tests to determine the optimal level of vacuum, pulsation rate and pulsation ratio of new milking machines in high and low milk lines for sheep and goats. This study was conducted at the Department of Research and Development, Siliconform, Germany. For this purpose, different levels of vacuum (32, 34, 36, 38 and 40 kPa), milk jet (2, 2.5, 3 and 4 mm), milk line (high line and low line) and pulsation ratio (50:50 and 60:40) were used. First minute water flow (1st WF/kg) was used as an indicator for assessing the best combination in the milking machine. In addition, the cyclic vacuum fluctuation was measured in the inner chamber of the teat cup during the 1st WF/kg with the aid of a Vacuscope device. Statistical analysis was conducted using the mixed procedure in SAS. Our results show that the vacuum level, the milk jet and the pulsation ratio had a significant influence (p < 0.05) on the 1st WF/kg in the two milking machines for goats and sheep. In conclusion, the ideal conditions for milking goats with air inlet teat cups in the milking machine are a vacuum level of 36–38 kPa (low line) and 38–40 kPa (high line), a pulsation rate of 90 cycles/min and a pulsation ratio of 60:40, while the ideal conditions in the sheep milking machines are a vacuum level of 35–36 kPa (low line) and 36–38 kPa (high line), a pulsation rate of 120 cycles/min and a pulsation ratio of 60:40 or 50:50.


Animals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 40
Author(s):  
Gema Romero ◽  
Joel Bueso-Ródenas ◽  
Manuel Alejandro ◽  
Francisco Moya ◽  
José Ramón Díaz

The Murciano-Granadina goat breed has been described as a slow milking breed. As milking machine parameters can affect milk extraction in terms of yield and time employed, two experiments of one-month duration were performed with 88 goats in Latin square design to find the best combination of these parameters. One of them was carried out in a mid-line milking machine and one in a low-line milking machine. For each of them, two vacuum levels (36 and 40 kPa), two pulsation rates (90 and 120 cycles/min) and two pulsator ratios (50 and 60%) were used and milking efficiency, sanitary status of the mammary gland, milk cortisol, and teat end status were evaluated. Results showed that in milking machines installed in mid- and low-line, the use of 40 kPa system vacuum, 60% pulsator ratio and 90 or 120 cycles/min pulsation rate achieved optimum milking fractioning and efficiency. In the case of low-level milking machines, a similar combination with 36 kPa not only showed worse milking fractioning values, but also provided better values of teat end status and cortisol level.


MRS Bulletin ◽  
2021 ◽  
Author(s):  
John Robertson ◽  
Zhaofu Zhang

AbstractThe ability to dope a semiconductor depends on whether the Fermi level can be moved into its valence or conduction bands, on an energy scale referred to the vacuum level. For oxides, there are various suitable n-type oxide semiconductors, but there is a marked absence of similarly suitable p-type oxides. This problem is of interest not only for thin-film transistors for displays, or solar cell electrodes, but also for back-end-of-line devices for the semiconductor industry. This has led to a wide-ranging search for p-type oxides using high-throughput calculations. We note that some proposed p-type metal oxides have cation s-like lone pair states. The defect energies of some of these oxides were calculated in detail. The example SnTa2O6 is of interest, but others have structures more closely based on perovskite structure and are found to have more n-type than p-type character. Graphic abstract


2021 ◽  
Vol 8 ◽  
Author(s):  
Sigurd Bjarne Rørvik ◽  
Marius Auflem ◽  
Henrikke Dybvik ◽  
Martin Steinert

Tactile hands-only training is particularly important for medical palpation. Generally, equipment for palpation training is expensive, static, or provides too few study cases to practice on. We have therefore developed a novel haptic surface concept for palpation training, using ferrogranular jamming. The concept’s design consists of a tactile field spanning 260 x 160 mm, and uses ferromagnetic granules to alter shape, position, and hardness of palpable irregularities. Granules are enclosed in a compliant vacuum-sealed chamber connected to a pneumatic system. A variety of geometric shapes (output) can be obtained by manipulating and arranging granules with permanent magnets. The tactile hardness of the palpable output can be controlled by adjusting the chamber’s vacuum level. A psychophysical experiment (N = 28) investigated how people interact with the palpable surface and evaluated the proposed concept. Untrained participants characterized irregularities with different position, form, and hardness through palpation, and their performance was evaluated. A baseline (no irregularity) was compared to three irregularity conditions: two circular shapes with different hardness (Hard Lump and Soft Lump), and an Annulus shape. 100% of participants correctly identified an irregularity in the three irregularity conditions, whereas 78.6% correctly identified baseline. Overall agreement between participants was high (κ= 0.723). The Intersection over Union (IoU) for participants sketched outline over the actual shape was IoU Mdn = 79.3% for Soft Lump, IoU Mdn = 68.8% for Annulus, and IoU Mdn = 76.7% for Hard Lump. The distance from actual to drawn center was Mdn = 6.4 mm (Soft Lump), Mdn = 5.3 mm (Annulus), and Mdn = 7.4 mm (Hard Lump), which are small distances compared to the size of the field. The participants subjectively evaluated Soft Lump to be significantly softer than Hard Lump and Annulus. Moreover, 71% of participants thought they improved their palpation skills throughout the experiment. Together, these results show that the concept can render irregularities with different position, form, and hardness, and that users are able to locate and characterize these through palpation. Participants experienced an improvement in palpation skills throughout the experiment, which indicates the concepts feasibility as a palpation training device.


Author(s):  
Xiangkai Deng ◽  
Wei Zhang ◽  
Xiaojie Zhou ◽  
Zitao Wang ◽  
Jiangting Tang ◽  
...  

2021 ◽  
Vol 103 (23) ◽  
Author(s):  
Duk-Hyun Choe ◽  
Damien West ◽  
Shengbai Zhang

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Kowsalya Arumugam ◽  
Abhishake Goyal ◽  
Hong-Ming Chen ◽  
Jing-Huan Dai ◽  
Mau-Fu Gao ◽  
...  

AbstractUsing photoemission spectroscopy (PES), we have systematically investigated the behavior of polar organic molecule, chloroaluminum phthalocyanine (ClAlPc), adsorbed in the Cl-down configuration on the Ag(111) substrate at low temperature − 195 °C under UV irradiation with a range of different photon fluxes. Judging from the evolution of photoemission spectral line shapes of molecular energy states, we discovered that the Cl atoms are so robustly anchored at Ag(111) that the impinging photons cannot flip the ClAlPc molecules, but instead they crouch them down due to radiation pressure; we observe that the phthalocyanine (Pc) lobes bend down to interact with Ag atoms on the substrate and induce charge transfer from them. As photon flux is increased, radiation pressure on the Pc plane initiates tunneling of the Cl atom through the molecular plane to turn the adsorption configuration of ClAlPc from Cl-down to an upheld Cl-up configuration, elucidating an optomechanical way of manipulating the dipole direction of polar molecules. Finally, work function measurements provide a distinct signature of the resulting upheld Cl-up configuration as it leads to a large increase in vacuum level (VL), ~ 0.4 eV higher than that of a typical flat-on Cl-up configuration driven by thermal annealing.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
G. Greczynski ◽  
L. Hultman

AbstractChemical state analysis in X-ray photoelectron spectroscopy (XPS) relies on assigning well-defined binding energy values to core level electrons originating from atoms in particular bonding configurations. Here, we present direct evidence for the violation of this paradigm. It is shown that the C 1s peak due to C–C/C–H bonded atoms from adventitious carbon (AdC) layers accumulating on Al and Au foils splits into two distinctly different contributions, as a result of vacuum level alignment at the AdC/foil interface. The phenomenon is observed while simultaneously recording the spectrum from two metal foils in electric contact with each other. This finding exposes fundamental problems with the reliability of reported XPS data as C 1s peak of AdC is routinely used for binding energy scale referencing. The use of adventitious carbon in XPS should thus be discontinued as it leads to nonsense results. Consequently, ISO and ASTM charge referencing guides need to be rewritten.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Gyu-Hyun Go ◽  
Jangguen Lee ◽  
Taeil Chung ◽  
Byung Hyun Ryu ◽  
Hyunwoo Jin ◽  
...  

AbstractA dusty thermal vacuum chamber (DTVC) containing a regolith simulant bed is essential for testing equipment and techniques related to lunar surface exploration. Space agencies have been reluctant to operate a DTVC because of the challenge of controlling soil disturbance of the lunar regolith simulant bed during pumping down or depressurization, which may contaminate or even damage the chamber and vacuum equipment. There appears to be no previously available solution to this problem, or how to avoid it. We investigated the mechanism of soil disturbance during depressurization and established a criterion for evaluating its occurrence. The proposed criterion was validated by extensive experiments and numerical modelling to simulate air evacuation from soil voids. There is a critical pressure difference (CPD) between the top and bottom of the lunar regolith simulant bed that causes soil disturbance during depressurization. We found a simple equation estimating the CPD and further provided guideline on the optimum depressurization rate to avoid soil disturbance before the target vacuum level is achieved under varying soil conditions.


Animals ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 121
Author(s):  
Joel Bueso-Ródenas ◽  
Manuel Alejandro ◽  
Gema Romero ◽  
José Ramón Díaz

Experiments carried out in dairy cows show that mechanical stimulation prior to milking offers a good release of oxytocin without involving changes in milk yield or a reduction of the milking time. The objective of the present study was to evaluate the effect of automatic prestimulation on milk fractioning, milking duration and milk flows, teat-end status, and vacuum levels at the short milk tubes and in the pulsation tubes of dairy goats. With this aim, three experiments in Latin square design were developed employing goats in different moments of the lactation: one of them at the onset of lactation, one at mid-lactation, and the last at the end of lactation. Two treatments were tested: milking with a mechanical prestimulation of 300 ppm for a 20-s period and milking without prestimulation. Results showed that prestimulation at the end of lactation showed slightly lower average milk flow (kg/min) values (0.53 ± 0.02 vs. 0.60 ± 0.02; p = 0.03) and lower maximum vacuum level values (Kpa) in the pulsation tubes (27.08 ± 0.15 vs. 39.48 ± 0.25; p < 0.01). No other differences were found in the variables related to milking efficiency or teat-end status in the three experiments carried out.


Sign in / Sign up

Export Citation Format

Share Document