scholarly journals Detection of Winding Axial Displacement of a Real Transformer by Frequency Response Analysis without Fingerprint Data

Energies ◽  
2021 ◽  
Vol 15 (1) ◽  
pp. 200
Author(s):  
Satoru Miyazaki

Detection of the axial displacement of power-transformer winding is important to ensure its highly reliable operation. Frequency response analysis is a promising candidate in detecting the axial displacement. However, a method of detecting the axial displacement at an incipient stage without the need for fingerprint data has not been investigated yet. This paper focuses on resonances showing a bipolar signature in the transfer function of inductive interwinding measurement, which is sensitive to the axial displacement of the winding. Transfer functions in the inductive interwinding measurements of eight power transformers are measured before shipping to elucidate the features of resonances showing a bipolar signature. The measured resonances showing the bipolar signature can be divided into the “stair type” and the “crossing-curve type”. It is found that the grounding points in an inductive interwinding measurement determine the type of resonance showing the bipolar signature, irrespective of the type of winding, such as interleaved or multilayer winding, the winding arrangement, and the existence of stabilizing and tertiary windings. On the basis of this finding, a method of detecting the axial displacement of a transformer winding is proposed. In the proposed method, the amplitudes of the resonances among three phases are compared, or the three-phase pattern of the resonances is compared with normal patterns. Therefore, the proposed method is applicable to three-phase transformers without fingerprint data. The proposed method is applied to a real transformer that experienced a ground fault due to a lightning strike at a nearby transmission tower, and the effectiveness of the proposed method is confirmed.

Author(s):  
Nurul Farahwahida Md Yasid ◽  
A. A. Alawady ◽  
M. F. M. Yousof ◽  
S. Al-Ameri ◽  
M. S. Kamarudin

Sweep frequency response analysis (SFRA) is a reliable method for detection and diagnosis of faults in the active part of transformers. However, although SFRA is widely employed, the interpretation of SFRA signature is still a challenge and require experts to analyse them. This is due to lack of guideline and standard for SFRA signature interpretation and clarification. This paper presents the interpretation of SFRA signature by classification and quantification on inter-turn short circuit fault on the transformer winding. The short-circuited turns fault on HV winding phase “A” was practically simulated on three different units of three-phase transformers. The results of simulated fault are presented and discussed. A conclusion was drawn which provides the interpretation of the SFRA response due to inter-turn short circuit fault case by using a statistical indicator which is NCEPRI algorithm.


2016 ◽  
Vol 136 (7) ◽  
pp. 654-662
Author(s):  
Satoru Miyazaki ◽  
Yoshinobu Mizutani ◽  
Akira Taguchi ◽  
Junichi Murakami ◽  
Naokazu Tsuji ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document