scholarly journals Performance Evaluation of a Continuous Operation Adsorption Chiller Powered by Solar Energy Using Silica Gel and Water as the Working Pair

Energies ◽  
2014 ◽  
Vol 7 (10) ◽  
pp. 6382-6400 ◽  
Author(s):  
Hassan Hassan
Energies ◽  
2020 ◽  
Vol 13 (10) ◽  
pp. 2553 ◽  
Author(s):  
Jung-Gil Lee ◽  
Kyung Jin Bae ◽  
Oh Kyung Kwon

In this study, the performance evaluation of an adsorption chiller (AD) system with three different adsorbents—silica-gel, aluminum fumarate, and FAM-Z01—was conducted to investigate the effects of adsorption isotherms and physical properties on the system’s performance. In addition, the performance evaluation of the AD system for a low inlet hot-water temperature of 60 °C was performed to estimate the performance of the system when operated by low quality waste heat or sustainable energy sources. For the simulation work, a two-bed type AD system is considered, and silica-gel, metal organic frameworks (MOFs), and ferro-aluminophosphate (FAPO, FAM-Z01) were employed as adsorbents. The simulation results were well matched with the laboratory-scale experimental results and the maximum coefficient of performance (COP) difference was 7%. The cooling capacity and COP of the AD system were investigated at different operating conditions to discuss the influences of the adsorbents on the system performance. Through this study, the excellence of the adsorbent, which has an S-shaped isotherm graph, was presented. In addition, the influences of the physical properties of the adsorbent were also discussed with reference to the system performance. Among the three different adsorbents employed in the AD system, the FAM-Z01 shows the best performance at inlet hot water temperature of 60 °C, which can be obtained from waste heat or sustainable energy, where the cooling capacity and COP were 5.13 kW and 0.47, respectively.


Solar Energy ◽  
2011 ◽  
Vol 85 (7) ◽  
pp. 1469-1478 ◽  
Author(s):  
G. Zhang ◽  
D.C. Wang ◽  
J.P. Zhang ◽  
Y.P. Han ◽  
Wanchao Sun

2018 ◽  
Vol 1 (2) ◽  
pp. 40-51 ◽  
Author(s):  
Muhammad Burhan ◽  
Muhammad Wakil Shahzad ◽  
Kim Choon Ng

Standalone power systems have vital importance as energy source for remote area. On the other hand, a significant portion of such power production is used for cooling purposes. In this scenario, renewable energy sources provide sustainable solution, especially solar energy due to its global availability. Concentrated photovoltaic (CPV) system provides highest efficiency photovoltaic technology, which can operate at x1000 concentration ratio. However, such high concentration ratio requires heat dissipation from the cell area to maintain optimum temperature. This paper discusses the size optimization algorithm of sustainable cooling system using CPVT. Based upon the CPV which is operating at x1000 concentration with back plate liquid cooling, the CPVT system size is optimized to drive a hybrid mechanical vapor compression (MVC) chiller and adsorption chiller, by utilizing both electricity and heat obtained from the solar system. The electrolysis based hydrogen is used as primary energy storage system along with the hot water storage tanks. The micro genetic algorithm (micro-GA) based optimization algorithm is developed to find the optimum size of each component of CPVT-Cooling system with uninterrupted power supply and minimum cost, according to the developed operational strategy. The hybrid system is operated with solar energy system efficiency of 71%.


2017 ◽  
Vol 26 (5) ◽  
pp. 485-505 ◽  
Author(s):  
Laurent Vuilleumier ◽  
Christian Félix ◽  
Frank Vignola ◽  
Philippe Blanc ◽  
Jordi Badosa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document