scholarly journals Spatial Hurst–Kolmogorov Clustering

Encyclopedia ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 1010-1025
Author(s):  
Panayiotis Dimitriadis ◽  
Theano Iliopoulou ◽  
G.-Fivos Sargentis ◽  
Demetris Koutsoyiannis

The stochastic analysis in the scale domain (instead of the traditional lag or frequency domains) is introduced as a robust means to identify, model and simulate the Hurst–Kolmogorov (HK) dynamics, ranging from small (fractal) to large scales exhibiting the clustering behavior (else known as the Hurst phenomenon or long-range dependence). The HK clustering is an attribute of a multidimensional (1D, 2D, etc.) spatio-temporal stationary stochastic process with an arbitrary marginal distribution function, and a fractal behavior on small spatio-temporal scales of the dependence structure and a power-type on large scales, yielding a high probability of low- or high-magnitude events to group together in space and time. This behavior is preferably analyzed through the second-order statistics, and in the scale domain, by the stochastic metric of the climacogram, i.e., the variance of the averaged spatio-temporal process vs. spatio-temporal scale.

2010 ◽  
Vol 11 (6) ◽  
pp. 845-853
Author(s):  
Xinzhong YANG ◽  
Yunyan DU ◽  
Fenzhen SU ◽  
Min JI ◽  
Lijing WANG

2021 ◽  
Author(s):  
Lindsay Morris

<p><b>Spatial and spatio-temporal phenomena are commonly modelled as Gaussian processes via the geostatistical model (Gelfand & Banerjee, 2017). In the geostatistical model the spatial dependence structure is modelled using covariance functions. Most commonly, the covariance functions impose an assumption of spatial stationarity on the process. That means the covariance between observations at particular locations depends only on the distance between the locations (Banerjee et al., 2014). It has been widely recognized that most, if not all, processes manifest spatially nonstationary covariance structure Sampson (2014). If the study domain is small in area or there is not enough data to justify more complicated nonstationary approaches, then stationarity may be assumed for the sake of mathematical convenience (Fouedjio, 2017). However, relationships between variables can vary significantly over space, and a ‘global’ estimate of the relationships may obscure interesting geographical phenomena (Brunsdon et al., 1996; Fouedjio, 2017; Sampson & Guttorp, 1992). </b></p> <p>In this thesis, we considered three non-parametric approaches to flexibly account for non-stationarity in both spatial and spatio-temporal processes. First, we proposed partitioning the spatial domain into sub-regions using the K-means clustering algorithm based on a set of appropriate geographic features. This allowed for fitting separate stationary covariance functions to the smaller sub-regions to account for local differences in covariance across the study region. Secondly, we extended the concept of covariance network regression to model the covariance matrix of both spatial and spatio-temporal processes. The resulting covariance estimates were found to be more flexible in accounting for spatial autocorrelation than standard stationary approaches. The third approach involved geographic random forest methodology using a neighbourhood structure for each location constructed through clustering. We found that clustering based on geographic measures such as longitude and latitude ensured that observations that were too far away to have any influence on the observations near the locations where a local random forest was fitted were not selected to form the neighbourhood. </p> <p>In addition to developing flexible methods to account for non-stationarity, we developed a pivotal discrepancy measure approach for goodness-of-fit testing of spatio-temporal geostatistical models. We found that partitioning the pivotal discrepancy measures increased the power of the test.</p>


Author(s):  
Brian Rogers

The ability to detect motion is one of the most important properties of our visual system and the visual systems of nearly every other species. Motion perception is not just important for detecting the movement of objects—both for catching prey and for avoiding predators—but it is also important for providing information about the 3-D structure of the world, for maintaining balance, determining our direction of heading, segregating the scene and breaking camouflage, and judging time-to-contact with other objects in the world. ‘Motion perception’ describes the spatio-temporal process of motion perception and the perceptual effects that tell us something about the characteristics of the motion system: apparent motion, the motion after-effect, and induced motion.


1995 ◽  
Vol 27 (03) ◽  
pp. 642-651
Author(s):  
Jason J. Brown

Let be a real-valued, homogeneous, and isotropic random field indexed in . When restricted to those indices with , the Euclidean length of , equal to r (a positive constant), then the random field resides on the surface of a sphere of radius r. Using a modified stratified spherical sampling plan (Brown (1993)) on the sphere, define to be a realization of the random process and to be the cardinality of . Without specifying the dependence structure of nor the marginal distribution of the , conditions for asymptotic normality of the standardized sample mean, , are given. The conditions on and are motivated by the ideas and results for dependent stationary sequences.


2019 ◽  
Vol 570 ◽  
pp. 863-874 ◽  
Author(s):  
Björn Guse ◽  
Matthias Pfannerstill ◽  
Jens Kiesel ◽  
Michael Strauch ◽  
Martin Volk ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document