scholarly journals Numerical Solutions of Fractional Differential Equations by Using Laplace Transformation Method and Quadrature Rule

2021 ◽  
Vol 5 (3) ◽  
pp. 111
Author(s):  
Samaneh Soradi-Zeid ◽  
Mehdi Mesrizadeh ◽  
Carlo Cattani

This paper introduces an efficient numerical scheme for solving a significant class of fractional differential equations. The major contributions made in this paper apply a direct approach based on a combination of time discretization and the Laplace transform method to transcribe the fractional differential problem under study into a dynamic linear equations system. The resulting problem is then solved by employing the numerical method of the quadrature rule, which is also a well-developed numerical method. The present numerical scheme, which is based on the numerical inversion of Laplace transform and equal-width quadrature rule is robust and efficient. Some numerical experiments are carried out to evaluate the performance and effectiveness of the suggested framework.

2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Zain ul Abdeen ◽  
Mujeeb ur Rehman

PurposeThe purpose of this paper is to obtain a numerical scheme for finding numerical solutions of linear and nonlinear Hadamard-type fractional differential equations.Design/methodology/approachThe aim of this paper is to develop a numerical scheme for numerical solutions of Hadamard-type fractional differential equations. The classical Haar wavelets are modified to align them with Hadamard-type operators. Operational matrices are derived and used to convert differential equations to systems of algebraic equations.FindingsThe upper bound for error is estimated. With the help of quasilinearization, nonlinear problems are converted to sequences of linear problems and operational matrices for modified Haar wavelets are used to get their numerical solution. Several numerical examples are presented to demonstrate the applicability and validity of the proposed method.Originality/valueThe numerical method is purposed for solving Hadamard-type fractional differential equations.


Open Physics ◽  
2016 ◽  
Vol 14 (1) ◽  
pp. 226-230 ◽  
Author(s):  
A. Bolandtalat ◽  
E. Babolian ◽  
H. Jafari

AbstractIn this paper, we have applied a numerical method based on Boubaker polynomials to obtain approximate numerical solutions of multi-order fractional differential equations. We obtain an operational matrix of fractional integration based on Boubaker polynomials. Using this operational matrix, the given problem is converted into a set of algebraic equations. Illustrative examples are are given to demonstrate the efficiency and simplicity of this technique.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668335
Author(s):  
Adem Kılıçman ◽  
Wasan Ajeel Ahmood

The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.


Axioms ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 55 ◽  
Author(s):  
Fernando Silva ◽  
Davidson Moreira ◽  
Marcelo Moret

In this paper, we use the conformable fractional derivative to discuss some fractional linear differential equations with constant coefficients. By applying some similar arguments to the theory of ordinary differential equations, we establish a sufficient condition to guarantee the reliability of solving constant coefficient fractional differential equations by the conformable Laplace transform method. Finally, the analytical solution for a class of fractional models associated with the logistic model, the von Foerster model and the Bertalanffy model is presented graphically for various fractional orders. The solution of the corresponding classical model is recovered as a particular case.


2005 ◽  
Vol 1 (2) ◽  
pp. 178-185 ◽  
Author(s):  
Pankaj Kumar ◽  
Om P. Agrawal

This paper presents a numerical scheme for the solutions of Fractional Differential Equations (FDEs) of order α, 1<α<2 which have been expressed in terms of Caputo Fractional Derivative (FD). In this scheme, the properties of the Caputo derivative are used to reduce an FDE into a Volterra-type integral equation. The entire domain is divided into several small domains, and the distribution of the unknown function over the domain is expressed in terms of the function values and its slopes at the node points. These approximations are then substituted into the Volterra-type integral equation to reduce it to algebraic equations. Since the method enforces the continuity of variables at the node points, it provides a solution that is continuous and with a slope that is also continuous over the entire domain. The method is used to solve two problems, linear and nonlinear, using two different types of polynomials, cubic order and fractional order. Results obtained using both types of polynomials agree well with the analytical results for problem 1 and the numerical results obtained using another scheme for problem 2. However, the fractional order polynomials give more accurate results than the cubic order polynomials do. This suggests that for the numerical solutions of FDEs fractional order polynomials may be more suitable than the integer order polynomials. A series of numerical studies suggests that the algorithm is stable.


2019 ◽  
Vol 36 (2) ◽  
pp. 551-568
Author(s):  
Zain ul Abdeen ◽  
Mujeeb ur Rehman

Purpose The purpose of this paper is to present a computational technique based on Newton–Cotes quadrature rule for solving fractional order differential equation. Design/methodology/approach The numerical method reduces initial value problem into a system of algebraic equations. The method presented here is also applicable to non-linear differential equations. To deal with non-linear equations, a recursive sequence of approximations is developed using quasi-linearization technique. Findings The method is tested on several benchmark problems from the literature. Comparison shows the supremacy of proposed method in terms of robust accuracy and swift convergence. Method can work on several similar types of problems. Originality/value It has been demonstrated that many physical systems are modelled more accurately by fractional differential equations rather than classical differential equations. Therefore, it is vital to propose some efficient numerical method. The computational technique presented in this paper is based on Newton–Cotes quadrature rule and quasi-linearization. The key feature of the method is that it works efficiently for non-linear problems.


2020 ◽  
Vol 26 (1) ◽  
pp. 35-55
Author(s):  
Abdelkader Kehaili ◽  
Ali Hakem ◽  
Abdelkader Benali

In this paper, we present the exact solutions of the Parabolic-like equations and Hyperbolic-like equations with variable coefficients, by using Homotopy perturbation transform method (HPTM). Finally, we extend the results to the time-fractional differential equations. Keywords: Caputo’s fractional derivative, fractional differential equations, homotopy perturbation transform method, hyperbolic-like equation, Laplace transform, parabolic-like equation.


2021 ◽  
pp. 17-26
Author(s):  
Hameeda Oda AL-Humedi ◽  
Faeza Lafta Hasan

This paper presents a numerical scheme for solving nonlinear time-fractional differential equations in the sense of Caputo. This method relies on the Laplace transform together with the modified Adomian method (LMADM), compared with the Laplace transform combined with the standard Adomian Method (LADM). Furthermore, for the comparison purpose, we applied LMADM and LADM for solving nonlinear time-fractional differential equations to identify the differences and similarities. Finally, we provided two examples regarding the nonlinear time-fractional differential equations, which showed that the convergence of the current scheme results in high accuracy and small frequency to solve this type of equations.


Sign in / Sign up

Export Citation Format

Share Document