scholarly journals Homotopy Perturbation Transform method for solving the partial and the time-fractional differential equations with variable coefficients

2020 ◽  
Vol 26 (1) ◽  
pp. 35-55
Author(s):  
Abdelkader Kehaili ◽  
Ali Hakem ◽  
Abdelkader Benali

In this paper, we present the exact solutions of the Parabolic-like equations and Hyperbolic-like equations with variable coefficients, by using Homotopy perturbation transform method (HPTM). Finally, we extend the results to the time-fractional differential equations. Keywords: Caputo’s fractional derivative, fractional differential equations, homotopy perturbation transform method, hyperbolic-like equation, Laplace transform, parabolic-like equation.

2018 ◽  
Vol 13 (1) ◽  
pp. 13 ◽  
Author(s):  
H. Yépez-Martínez ◽  
J.F. Gómez-Aguilar

Analytical and numerical simulations of nonlinear fractional differential equations are obtained with the application of the homotopy perturbation transform method and the fractional Adams-Bashforth-Moulton method. Fractional derivatives with non singular Mittag-Leffler function in Liouville-Caputo sense and the fractional derivative of Liouville-Caputo type are considered. Some examples have been presented in order to compare the results obtained, classical behaviors are recovered when the derivative order is 1.


2013 ◽  
Vol 2013 ◽  
pp. 1-12 ◽  
Author(s):  
Abdon Atangana ◽  
Adem Kılıçman

We make use of the properties of the Sumudu transform to solve nonlinear fractional partial differential equations describing heat-like equation with variable coefficients. The method, namely, homotopy perturbation Sumudu transform method, is the combination of the Sumudu transform and the HPM using He’s polynomials. This method is very powerful, and professional techniques for solving different kinds of linear and nonlinear fractional differential equations arising in different fields of science and engineering.


Author(s):  
Muhammed Yiğider ◽  
Serkan Okur

In this study, solutions of time-fractional differential equations that emerge from science and engineering have been investigated by employing reduced differential transform method. Initially, the definition of the derivatives with fractional order and their important features are given. Afterwards, by employing the Caputo derivative, reduced differential transform method has been introduced. Finally, the numerical solutions of the fractional order Murray equation have been obtained by utilizing reduced differential transform method and results have been compared through graphs and tables. Keywords: Time-fractional differential equations, Reduced differential transform methods, Murray equations, Caputo fractional derivative.


2021 ◽  
Vol 21 (2) ◽  
pp. 355-364
Author(s):  
ABDELKADER KEHAILI ◽  
ABDELKADER BENALI ◽  
ALI HAKEM

In this paper, we apply an efficient method called the Homotopy perturbation transform method (HPTM) to solve systems of nonlinear fractional partial differential equations. The HPTM can easily be applied to many problems and is capable of reducing the size of computational work.


2017 ◽  
Vol 9 (1) ◽  
pp. 168781401668335
Author(s):  
Adem Kılıçman ◽  
Wasan Ajeel Ahmood

The aim of this article is to study the matrix fractional differential equations and to find the exact solution for system of matrix fractional differential equations in terms of Riemann–Liouville using Laplace transform method and convolution product to the Riemann–Liouville fractional of matrices. Also, we show the theorem of non-homogeneous matrix fractional partial differential equation with some illustrative examples to demonstrate the effectiveness of the new methodology. The main objective of this article is to discuss the Laplace transform method based on operational matrices of fractional derivatives for solving several kinds of linear fractional differential equations. Moreover, we present the operational matrices of fractional derivatives with Laplace transform in many applications of various engineering systems as control system. We present the analytical technique for solving fractional-order, multi-term fractional differential equation. In other words, we propose an efficient algorithm for solving fractional matrix equation.


Axioms ◽  
2018 ◽  
Vol 7 (3) ◽  
pp. 55 ◽  
Author(s):  
Fernando Silva ◽  
Davidson Moreira ◽  
Marcelo Moret

In this paper, we use the conformable fractional derivative to discuss some fractional linear differential equations with constant coefficients. By applying some similar arguments to the theory of ordinary differential equations, we establish a sufficient condition to guarantee the reliability of solving constant coefficient fractional differential equations by the conformable Laplace transform method. Finally, the analytical solution for a class of fractional models associated with the logistic model, the von Foerster model and the Bertalanffy model is presented graphically for various fractional orders. The solution of the corresponding classical model is recovered as a particular case.


Sign in / Sign up

Export Citation Format

Share Document