scholarly journals A Private 16q24.2q24.3 Microduplication in a Boy with Intellectual Disability, Speech Delay and Mild Dysmorphic Features

Genes ◽  
2020 ◽  
Vol 11 (6) ◽  
pp. 707 ◽  
Author(s):  
Orazio Palumbo ◽  
Pietro Palumbo ◽  
Ester Di Muro ◽  
Luigia Cinque ◽  
Antonio Petracca ◽  
...  

No data on interstitial microduplications of the 16q24.2q24.3 chromosome region are available in the medical literature and remain extraordinarily rare in public databases. Here, we describe a boy with a de novo 16q24.2q24.3 microduplication at the Single Nucleotide Polymorphism (SNP)-array analysis spanning ~2.2 Mb and encompassing 38 genes. The patient showed mild-to-moderate intellectual disability, speech delay and mild dysmorphic features. In DECIPHER, we found six individuals carrying a “pure” overlapping microduplication. Although available data are very limited, genomic and phenotype comparison of our and previously annotated patients suggested a potential clinical relevance for 16q24.2q24.3 microduplication with a variable and not (yet) recognizable phenotype predominantly affecting cognition. Comparing the cytogenomic data of available individuals allowed us to delineate the smallest region of overlap involving 14 genes. Accordingly, we propose ANKRD11, CDH15, and CTU2 as candidate genes for explaining the related neurodevelopmental manifestations shared by these patients. To the best of our knowledge, this is the first time that a clinical and molecular comparison among patients with overlapping 16q24.2q24.3 microduplication has been done. This study broadens our knowledge of the phenotypic consequences of 16q24.2q24.3 microduplication, providing supporting evidence of an emerging syndrome.

2018 ◽  
Vol 34 (2) ◽  
pp. 86-93 ◽  
Author(s):  
John C. Herriges ◽  
Ellen M. Arch ◽  
Pamela A. Burgio ◽  
Erin E. Baldwin ◽  
Danielle LaGrave ◽  
...  

To date, 13 patients with interstitial microduplications involving Xq25q26.2 have been reported. Here, we report 6 additional patients from 2 families with duplications involving Xq25q26.2. Family I carries a 5.3-Mb duplication involving 26 genes. This duplication was identified in 3 patients and was associated with microcephaly, growth failure, developmental delay, and dysmorphic features. Family II carries an overlapping 791-kb duplication that involves 3 genes. This duplication was identified in 3 patients and was associated with learning disability and speech delay. The size and gene content of published overlapping Xq25q26.2 duplications vary, making it difficult to define a critical region or establish a genotype-phenotype correlation. However, patients with overlapping duplications have been found to share common clinical features including microcephaly, growth failure, intellectual disability, learning difficulties, and dysmorphic features. The 2 families presented here provide additional insight into the phenotypic spectrum and clinical significance of duplications in this region.


2021 ◽  
pp. mcs.a006124
Author(s):  
Beata Bessenyei ◽  
Istvan Balogh ◽  
Attila Mokanszki ◽  
Aniko Ujfalusi ◽  
Rolph Pfundt ◽  
...  

The MED13L-related intellectual disability or MRFACD syndrome (Mental retardation and distinctive facial features with or without cardiac defects; MIM # 616789) is one of the most common form of syndromic intellectual disability with about a hundred cases reported so far. Affected individuals share overlapping features comprising intellectual disability, hypotonia, motor delay, remarkable speech delay, and a recognizable facial gestalt. De novo disruption of the MED13L gene by deletions, duplications or sequence variants has been identified deleterious. Siblings affected by intragenic deletion transmitted from a mosaic parent have been reported once in the literature. We now present the first case of paternal germinal mosaicism for a missense MED13L variant causing MRFACD syndrome in one of the father's children and be the likely cause of intellectual disability and facial dysmorphism in the other. As part of the Mediator complex, the MED proteins have an essential role in regulating transcription. 32 subunits of the Mediator complex genes have been linked to congenital malformations that are now acknowledged as transcriptomopathies. The MRFACD syndrome has been suggested to represent a recognizable phenotype.


2018 ◽  
Vol 63 (8) ◽  
pp. 919-922 ◽  
Author(s):  
Ekaterina R. Lozier ◽  
Fedor A. Konovalov ◽  
Ilya V. Kanivets ◽  
Denis V. Pyankov ◽  
Philip A. Koshkin ◽  
...  

2020 ◽  
Vol 13 (1) ◽  
Author(s):  
Mina Wang ◽  
Bin Li ◽  
Zehuan Liao ◽  
Yu Jia ◽  
Yuanbo Fu

Abstract Background The microdeletion of chromosome 13 has been rarely reported. Here, we report a 14-year old Asian female with a de novo microdeletion on 13q12.3. Case presentation The child suffered mainly from two types of epileptic seizures: partial onset seizures and myoclonic seizures, accompanied with intellectual disability, developmental delay and minor dysmorphic features. The electroencephalogram disclosed slow waves in bilateral temporal, together with generalized spike-and-slow waves, multiple-spike-and-slow waves and slow waves in bilateral occipitotemporal regions. The exome sequencing showed no pathogenic genetic variation in the patient’s DNA sample. While the single nucleotide polymorphism (SNP) array analysis revealed a de novo microdeletion spanning 2.324 Mb, within the cytogenetic band 13q12.3. Conclusions The epilepsy may be associated with the mutation of KATNAL1 gene or the deletion unmasking a recessive mutation on the other allele, and our findings could provide a phenotypic expansion.


2012 ◽  
Vol 158A (4) ◽  
pp. 882-887 ◽  
Author(s):  
Antonella Fabretto ◽  
Maria Santa Rocca ◽  
Maria Dolores Perrone ◽  
Aldo Skabar ◽  
Vanna Pecile ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document