scholarly journals Chemical Characterization of Particulate Matter in the Renaissance City of Ferrara

Geosciences ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 227
Author(s):  
Elena Marrocchino ◽  
Chiara Telloli ◽  
Antonietta Rizzo

Atmospheric aerosols are today a key issue in air pollution, mostly related to public health. Two test areas in Ferrara, one in the city center (urban location) and one in the industrial area (industrial location), were studied in June–July 2016 using the SEM technique to identify the environmental impact of some potential pollutant sources. Collection was performed using adhesive tapes applied on the surface of road signs, which allows to select particulate matter moving on air with diffusion movement and to exclude the particles usually deposed by the gravitational process. Dimensional characterization has shown that, usually, smaller particles tend to aggregate themselves in bigger polycrystalline particles with the geometric diameter of up to 10 μm. Micro-analytical data have revealed a wide heterogeneous range of compositions: more abundant silicate followed by carbonate, chlorine, sulphate, carbon, and organic. This preliminary study has highlighted that the Renaissance city of Ferrara is affected by an environmental problem linked to the presence of particulate matter induced by industrial activities, as is the case with some of the most polluted cities in the world. The observations and analytical data pointed out the need for further investigation to better define the features of the fine particulate matter. This will be useful to preserve the cultural heritage of this Medieval-Renaissance city.

Author(s):  
Sachchida Tripathi ◽  
Vipul Lalchandani ◽  
Varun Kumar ◽  
Anna Tobler ◽  
Navaneeth Thamban ◽  
...  

<p>Atmospheric particulate matter has adverse effects on human health, and causes over 4 million deaths per year globally. New Delhi was ranked as world’s most polluted megacity with annual average PM<sub>2.5</sub> concentration of ~140 ug.m<sup>-3</sup>. Thus, real time chemical characterization of fine particulate matter and identification of its sources is important for developing cost effective mitigation policies.</p><p>Highly time resolved real-time chemical composition of PM<sub>2.5</sub> was measured using Long-Time of Flight-Aerosol Mass Spectrometer (L-ToF-AMS) at Indian Institute of Technology Delhi and Time of Flight-Aerosol Chemical Speciation Monitor (ToF-ACSM) at Indian Institute of Tropical Meteorology, Delhi, and PM<sub>1 </sub>using High Resolution-Time of Flight-Aerosol Mass Spectrometer (HR-ToF-AMS) at Manav Rachna International University, Faridabad, Haryana located ~40 km downwind of Delhi during Jan-March, 2018. Black carbon concentration was measured using Aethalometer at all three sites. Unit mass resolution (UMR) and high resolution (HR) data analysis were performed on AMS and ACSM mass spectra to calculate organics, nitrate, sulfate and chloride concentrations. Positive Matrix Factorization (PMF) (Paatero and Tapper, 1994) of organic mass spectra was performed by applying multilinear engine (ME-2) algorithm using Sofi (Source finder) for identifying sources of OA.</p>


2020 ◽  
Vol 30 (2) ◽  
Author(s):  
Rirhandzu J. Novela ◽  
Wilson M. Gitari ◽  
Hector Chikoore ◽  
Peter Molnar ◽  
Rabelani Mudzielwana ◽  
...  

This paper presents a chemical characterization of fine particulate matter in air masses passing through Thohoyandou and further determines their sources. Fine particulate matter (PM2.5) was collected and quantified using gravimetric method. X-ray fluorescence, Smoke stain reflectometer, Optical Transmissometer and Scanning Electron Microscopy- Energy Dispersive X-Ray Spectroscopy were used to determine the chemical and morphological composition of the particulate matter. The source apportionment was done using principal component analysis while the HYSPLIT model was used to depict the long-range transport clusters. The mean of concentrations of PM2.5, soot, black carbon and UVPM were 10.9 μg/m3, 0.69x10-5 m-1, 1.22 μg/m3 and 1.40 μg/m3, respectively. A total of 24 elements were detected in the PM2.5 with Pd, Sn, Sb, Mg, Al and Si being the dominant elements. SEM-EDS have shown the presence of irregular, flat and spherical particles which is associated with crustal material and industrial emissions. Source apportionment analysis revealed six major sources of PM2.5 in Thohoyandou namely, crustal materials, industrial emissions, vehicular emissions, urban emissions, fossil fuel combustion and fugitive-Pd. Air parcels that pass-through Thohoyandou were clustered into four. The major pathways were from the SW Indian Ocean, Atlantic Ocean and inland trajectories. Clusters from the ocean are associated with low concentration, while inland clusters are associated with high concentration of PM2.5. The PM2.5 occasionally exceeds the WHO daily guideline in Thohoyandou and the sources of PM2.5 extend beyond the borders. This study recommends that further studies need to be carried out to assess the health impacts of PM2.5 in Thohoyandou.


2019 ◽  
Vol 19 (6) ◽  
pp. 1439-1449 ◽  
Author(s):  
Hsi-Hsien Yang ◽  
Narayan Babu Dhital ◽  
Lin-Chi Wang ◽  
Yueh-Shu Hsieh ◽  
Kuei-Ting Lee ◽  
...  

2008 ◽  
Vol 90 (2-4) ◽  
pp. 313-325 ◽  
Author(s):  
Martino Amodio ◽  
Paolo Bruno ◽  
Maurizio Caselli ◽  
Gianluigi de Gennaro ◽  
Paolo Rosario Dambruoso ◽  
...  

2001 ◽  
Vol 32 ◽  
pp. 353-354
Author(s):  
E. BRÜGGEMANN ◽  
T. GNAUK ◽  
K. MULLER ◽  
H. HERRMANN

2021 ◽  
Vol 96 ◽  
pp. 11-18 ◽  
Author(s):  
Yishu Xu ◽  
Xiaowei Liu ◽  
Jiuxin Qi ◽  
Tianpeng Zhang ◽  
Jingying Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document