scholarly journals Integration of Site Effects into Probabilistic Seismic Hazard Assessment (PSHA): A Comparison between Two Fully Probabilistic Methods on the Euroseistest Site

Geosciences ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 285 ◽  
Author(s):  
Claudia Aristizábal ◽  
Pierre-Yves Bard ◽  
Céline Beauval ◽  
Juan Gómez

The integration of site effects into Probabilistic Seismic Hazard Assessment (PSHA) is still an open issue within the seismic hazard community. Several approaches have been proposed varying from deterministic to fully probabilistic, through hybrid (probabilistic-deterministic) approaches. The present study compares the hazard curves that have been obtained for a thick, soft non-linear site with two different fully probabilistic, site-specific seismic hazard methods: (1) The analytical approximation of the full convolution method (AM) proposed by Bazzurro and Cornell 2004a,b and (2) what we call the Full Probabilistic Stochastic Method (SM). The AM computes the site-specific hazard curve on soil, HC(Sas(f)), by convolving for each oscillator frequency the bedrock hazard curve, HC(Sar(f)), with a simplified representation of the probability distribution of the amplification function, AF(f), at the considered site The SM hazard curve is built from stochastic time histories on soil or rock corresponding to a representative, long enough synthetic catalog of seismic events. This comparison is performed for the example case of the Euroseistest site near Thessaloniki (Greece). For this purpose, we generate a long synthetic earthquake catalog, we calculate synthetic time histories on rock with the stochastic point source approach, and then scale them using an adhoc frequency-dependent correction factor to fit the specific rock target hazard. We then propagate the rock stochastic time histories, from depth to surface using two different one-dimensional (1D) numerical site response analyses, while using an equivalent-linear (EL) and a non-linear (NL) code to account for code-to-code variability. Lastly, we compute the probability distribution of the non-linear site amplification function, AF(f), for both site response analyses, and derive the site-specific hazard curve with both AM and SM methods, to account for method-to-method variability. The code-to-code variability (EL and NL) is found to be significant, providing a much larger contribution to the uncertainty in hazard estimates, than the method-to-method variability: AM and SM results are found comparable whenever simultaneously applicable. However, the AM method is also shown to exhibit severe limitations in the case of strong non-linearity, leading to ground motion “saturation”, so that finally the SM method is to be preferred, despite its much higher computational price. Finally, we encourage the use of ground-motion simulations to integrate site effects into PSHA, since models with different levels of complexity can be included (e.g., point source, extended source, 1D, two-dimensional (2D), and three-dimensional (3D) site response analysis, kappa effect, hard rock …), and the corresponding variability of the site response can be quantified.

2017 ◽  
Vol 33 (4) ◽  
pp. 1433-1453 ◽  
Author(s):  
Sreeram Reddy Kotha ◽  
Dino Bindi ◽  
Fabrice Cotton

The increasing numbers of recordings at individual sites allows quantification of empirical linear site-response adjustment factors ( δS2 S s) from the ground motion prediction equation (GMPE) residuals. The δS2 S s are then used to linearly scale the ergodic GMPE predictions to obtain site-specific ground motion predictions in a partially non-ergodic Probabilistic Seismic Hazard Assessment (PSHA). To address key statistical and conceptual issues in the current practice, we introduce a novel empirical region- and site-specific PSHA methodology wherein, (1) site-to-site variability ( φ S2 S) is first estimated as a random-variance in a mixed-effects GMPE regression, (2) δS2 S s at new sites with strong motion are estimated using the a priori φ S2 S, and (3) the GMPE site-specific single-site aleatory variability σ ss,s is replaced with a generic site-corrected aleatory variability σ0. Comparison of region- and site-specific hazard curves from our method against the traditional ergodic estimates at 225 sites in Europe and Middle East shows an approximate 50% difference in predicted ground motions over a range of hazard levels—a strong motivation to increase seismological monitoring of critical facilities and enrich regional ground motion data sets.


2015 ◽  
Vol 19 (2) ◽  
pp. 129-134 ◽  
Author(s):  
Ercan Işık ◽  
Mustafa Kutanis

<p>In this study, site-specific earthquake spectra for Bitlis province in Lake Van Basin has been obtained. It is noteworthy that, in probabilistic seismic hazard assessment, as a first stage data from geological studies and records from the instrumental period were compiled to make a seismic source characterization for the study region.The probabilistic seismic hazard curves for Bitlis were developed based on selected appropriate attenuation relationships, at rock sites, with a probability of exceedance 2%, 10% and 50% in 50 year periods. The obtained results were compared with the spectral responses proposed for seismic evaluation and retrofit of the building structure in Turkish Earthquake Code, Section 2. At the end of this study, it is apprehended that the Code proposed earthquake response spectra are not sufficient for the performance evaluation of the existing structures and the current estimations show that the potential seismic hazard research of the Turkey is underestimated in the code.Therefore, site- specific design spectra for the region should be developed, which reflect the characteristics of local sites.</p><p> </p><p><strong>Determinación de espectros de sitio específico locales a través del análisis probabilístico de amenazas sísmicaspara la provincia de Bitlis, Turquía</strong></p><p> </p><p><strong>Resumen</strong></p>En este estudio se obtuvieron espectros de terremoto de sitio específico para la cuenca del Lago de Van, en la provincia de Bitlis, al este de Turquía. La primera fase del trabajo consistió en una evaluación probabilística de riesgo sísmico donde se compilaron los estudios geológicos y registros del período instrumental para hacer una caracterización de fuente sísmica en la región de estudio. Las curvas de amenaza sísmica para la provincia de Bitlis se desarrollaron con base en las relaciones de atenuación apropiada seleccionadas en los sitios rocosos, con una probabilidad de exceso de 2 %, 10 % y 50 % durante 50 años. Los resultados obtenidos se compararon con las respuestas de espectro propuestas para la evaluación sísmica y modernización de estructuras contempladas en el Código de Terremoto de Turquía, en la sección 2. En la parte final de este trabajo se comprende que las respuestas de espectros de terremoto propuestos en el código no son suficientes para la evaluación de desempeño de las estructuras existentes y que las estimaciones actuales muestran que la investigación de amenazas potenciales sísmicas en Turquía está subestimada en el código. Por lo tanto, el diseño de espectros de sitio específico para la región se debe desarrollar, ya que permitiría conocer las singularidades locales.</p>


2015 ◽  
Vol 58 (1) ◽  
Author(s):  
Shahid Ullah ◽  
Dino Bindi ◽  
Marco Pilz ◽  
Stefano Parolai

<p>It is well known that variability in the surface geology potentially leads to the modification of earthquake-induced ground motion over short distances. Although this effect is of major importance when seismic hazard is assessed at the urban level, it is very often not appropriately accounted for. In this paper, we present a first attempt at taking into account the influence of the shallow geological structure on the seismic hazard assessment for Bishkek, Kyrgyzstan, using a proxy (Vs30) that has been estimated from in situ seismic noise array analyses, and considering response spectral ratios calculated by analyzing a series of earthquake recordings of a temporary seismic network. To highlight the spatial variability of the observed ground motion, the obtained results are compared with those estimated assuming a homogeneous Vs30 value over the whole urban area. The seismic hazard is evaluated in terms of peak ground acceleration (PGA) and spectral acceleration (SA) at different periods (frequencies). The presented results consider the values obtained for a 10% probability of exceedance in 50 years. The largest SA estimated considering a rock site classification of the area (0.43 g) is observed for a period of 0.1 s (10 Hz), while the maximum PGA reaches 0.21 g. When site effects are included through the Vs30 proxy in the seismic hazard calculation, the largest SA, 0.67 g, is obtained for a period of 0.3 s (about 3.3 Hz). In terms of PGA, in this case the largest estimated value reaches 0.31 g in the northern part of the town. When the variability of ground motion is accounted for through response spectrum ratios, the largest SA reaches a value as high as 1.39 g at a period of 0.5 s. In general, considering site effects in the seismic hazard assessment of Bishkek leads to an increase of seismic hazard in the north of the city, which is thus identified as the most hazardous part within the study area and which is more far away from the faults.</p>


Sign in / Sign up

Export Citation Format

Share Document