scholarly journals A Calorimetric and Thermodynamic Investigation of the Synthetic Analogue of Mandarinoite, Fe2(SeO3)3∙5H2O

Geosciences ◽  
2018 ◽  
Vol 8 (11) ◽  
pp. 391 ◽  
Author(s):  
Maxim I. Lelet ◽  
Marina V. Charykova ◽  
Astrid Holzheid ◽  
Brendan Ledwig ◽  
Vladimir G. Krivovichev ◽  
...  

Thermophysical and thermochemical calorimetric investigations were carried out on the synthetic analogue of mandarinoite. The low-temperature heat capacity of Fe2(SeO3)3∙5H2O(cr) was measured using adiabatic calorimetry between 5.3 and 324.8 K, and the third-law entropy was determined. Using these Cp,mo(T) data, the third law entropy at T = 298.15 K, Smo, is calculated as 520.1 ± 1.1 J∙K–1∙mol–1. Smoothed Cp,moT values between T → 0 K and 320 K are presented, along with values for Smo and the functions [HmoT-Hmo0] and [ΦmoT-Φmo0]. The enthalpy of formation of Fe2(SeO3)3∙5H2O(cr) was determined by solution calorimetry with HF solution as the solvent, giving ΔfHmo(298 К, Fe2(SeO3)3∙5H2O, cr) = –3124.6 ± 5.3 kJ/mol. The standard Gibbs energy of formation for Fe2(SeO3)3∙5H2O(cr) at T = 298 K can be calculated on the basis on ΔfHmo(298 К) and ΔfSmo(298 К): ΔfGmo(298 К, Fe2(SeO3)3∙5H2O, cr) = ‒2600.8 ± 5.4 kJ/mol. The value of ΔfGm for Fe2(SeO3)3·5H2O(cr) was used to calculate the Eh–pH diagram of the Fe–Se–H2O system. This diagram has been constructed for the average contents of these elements in acidic waters of the oxidation zones of sulfide deposits. The behaviors of selenium and iron in the surface environment have been quantitatively explained by variations of the redox potential and the acidity-basicity of the mineral-forming medium. These parameters precisely determine the migration ability of selenium compounds and its precipitation in the form of solid phases.

2018 ◽  
Author(s):  
Rudolf Fullybright

Accurate quantification of biological resistance has been impossible so far. Among the various forms of biological resistance which exist in nature, pathogen resistance to drugs is a familiar one. However, as in the case of other forms of resistance, accurately quantifying drug resistance in pathogens has been impossible up to now. Here, we introduce a mathematically-defined and uniform procedure for the absolute quantification of biological resistance deployed by any living organism in the biological realm, including and beyond drug resistance in medicine. The scheme introduced makes possible the exact measurement or computation of the extent to which resistance is deployed by any living organism regardless of kingdom and regardless of the mechanism of resistance involved. Furthermore, the Second Law of Resistance indicating that resistance has the potential to increase to infinite levels, and the Third Law of Resistance indicating that resistance comes to an end once interaction stops, the resistance unit function introduced here is fully compatible with both the Second and Third Laws of Resistance.


2019 ◽  
Vol 64 (12) ◽  
pp. 1274-1280
Author(s):  
L. P. Ogorodova ◽  
Yu. D. Gritsenko ◽  
M. F. Vigasina ◽  
A. Yu. Bychkov ◽  
D. A. Ksenofontov ◽  
...  

A thermochemical study of natural calcium and magnesium orthosilicate ─ monticellite (Ca1.00Mg0.95)[SiO4] (Khabarovsk Territory, Russia) was carried out on the Tian-Calvet microcalorimeter. The enthalpy of formation from the elements fHоel(298.15 K) = -2238.4 4.5 kJ / mol was determined by the method of high-temperature melt solution calorimetry. The enthalpy and Gibbs energy of formation of monticellite of the theoretical composition of CaMg[SiO4] are calculated: fH0el(298.15 K) = -2248.4 4.5 kJ/mol and fG0el(298.15 K) = -2130.5 4.5 kJ/mol.


Author(s):  
Dennis Sherwood ◽  
Paul Dalby

The Third Law was introduced in Chapter 9; this chapter develops the Third Law more fully, introducing absolute entropies, and examining how adiabatic demagnetisation can be used to approach the absolute zero of temperature.


1942 ◽  
Vol 10 (5) ◽  
pp. 287-291 ◽  
Author(s):  
Paul C. Cross ◽  
Hartley C. Eckstrom

2015 ◽  
Vol 56 (4) ◽  
pp. 545-549 ◽  
Author(s):  
Masao Morishita ◽  
Hiroki Houshiyama
Keyword(s):  

1983 ◽  
Vol 60 (1) ◽  
pp. 65
Author(s):  
Maureen M. Julian ◽  
Frank H. Stillinger ◽  
Roger R. Festa

Sign in / Sign up

Export Citation Format

Share Document