scholarly journals Theoretical Prediction of the Efficiency of Hydrogen Production via Alkane Dehydrogenation in Catalytic Membrane Reactor

Hydrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 362-376
Author(s):  
Ekaterina V. Shelepova ◽  
Aleksey A. Vedyagin

The hydrogen economy is expected to dominate in the nearest future. Therefore, the most hydrogen-containing compounds are considered as potential pure hydrogen sources in order to achieve climate neutrality. On the other hand, alkanes are widely used to produce industrially important monomers via various routes, including dehydrogenation processes. Hydrogen is being produced as a by-product of these processes, so the application of efficient separation of hydrogen from the reaction mixture can give double benefits. Implementation of the dehydrogenation processes in the catalytic membrane reactor is that case. Since the use of dense metal membranes, which possess the highest perm-selectivity towards hydrogen, is complicated in practice, the present research is aimed at the optimization of the porous membrane characteristics. By means of a mathematical modeling approach, the effects of pore diameter on the hydrogen productivity and purity for the cases of ethane and propane dehydrogenation processes were analyzed. The pore size value of 0.45 nm was found to be crucial as far as the diffusion of both the alkane and alkene molecules through the membrane takes place.

2014 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
E.V. Shelepova ◽  
A.A. Vedyagin ◽  
I.V. Mishakov ◽  
A.S. Noskov

AbstractThe modeling of ethylbenzene dehydrogenation in a catalytic membrane reactor has been carried out for porous membrane by means of two-dimensional, non-isothermal stationary mathematical model. A mathematical model of the catalytic membrane reactor was applied, in order to study the effects of transport properties of the porous membrane on process performance. The performed modeling of the heat and mass transfer processes within the porous membrane, allowed us to estimate the efficiency of its use in membrane reactors, in comparison with a dense membrane (with additional oxidation of the hydrogen in shell side). The use of a porous ceramic membrane was found to cause an increase of the ethylbenzene conversion at 600°C, up to 93 %, while the conversion in the case of conventional reactor was 67%. In this work, we defined the key parameter values of porous membrane (pore diameter and thickness) for ethylbenzene dehydrogenation in catalytic membrane reactor, at which the highest conversion of ethylbenzene and styrene selectivity can be reached.


2002 ◽  
Vol 4 (5) ◽  
pp. 459-460 ◽  
Author(s):  
David W. Hall ◽  
Georgia Grigoropoulou ◽  
James H. Clark ◽  
Keith Scott ◽  
Roshan J. J. Jachuck

Sign in / Sign up

Export Citation Format

Share Document