scholarly journals Modeling of ethylbenzene dehydrogenation in catalytic membrane reactor with porous membrane

2014 ◽  
Vol 2 (1) ◽  
pp. 1-9 ◽  
Author(s):  
E.V. Shelepova ◽  
A.A. Vedyagin ◽  
I.V. Mishakov ◽  
A.S. Noskov

AbstractThe modeling of ethylbenzene dehydrogenation in a catalytic membrane reactor has been carried out for porous membrane by means of two-dimensional, non-isothermal stationary mathematical model. A mathematical model of the catalytic membrane reactor was applied, in order to study the effects of transport properties of the porous membrane on process performance. The performed modeling of the heat and mass transfer processes within the porous membrane, allowed us to estimate the efficiency of its use in membrane reactors, in comparison with a dense membrane (with additional oxidation of the hydrogen in shell side). The use of a porous ceramic membrane was found to cause an increase of the ethylbenzene conversion at 600°C, up to 93 %, while the conversion in the case of conventional reactor was 67%. In this work, we defined the key parameter values of porous membrane (pore diameter and thickness) for ethylbenzene dehydrogenation in catalytic membrane reactor, at which the highest conversion of ethylbenzene and styrene selectivity can be reached.

2018 ◽  
Vol 156 ◽  
pp. 08008 ◽  
Author(s):  
I.G.B.N. Makertihartha ◽  
Khoiruddin ◽  
Ahmad N. Hakim ◽  
P.T.P. Aryanti ◽  
I.G. Wenten

Maltitol is one of the low-calorie sweeteners which has a major role in food industries. Due to its characteristics of comparable sweetness level to sucrose, maltitol can be a suitable sugar replacement. In this work, catalytic membrane reactor (CMR) was examined in maltitol production through hydrogenation of maltose. Commercial ceramic membrane impregnated with Kalcat 8030 Nickel was used as the CMR. The reaction was conducted at a batch mode operation, 95 to 110°C of temperature, and 5 to 8 bar of pressure. In the range of working conditions used in this study, up to 47% conversion was achieved. The reaction conversion was significantly affected by temperature and pressure. Results of this preliminary study indicated that CMR can be used for hydrogenation of maltose with good performance under a relatively low operating pressure.


2006 ◽  
Vol 10 (3) ◽  
pp. 143-149
Author(s):  
Sotiris Kaldis ◽  
Savas Topis ◽  
Dimitris Koutsonikolas

An alternative technology for the removal of gas pollutants at the integrated gasification combined cycle process for power generation is the use of a catalytic membrane reactor. In the present study, ammonia decomposition in a catalytic reactor, with a simultaneous removal of hydrogen through a ceramic membrane, was investigated. A Ni/Al2O3 catalyst was prepared by the dry and wet impregnation method and characterized by the inductively coupled plasma method, scanning electron microscopy, X-ray diffraction, and N2 adsorption before and after activation. Commercially available a-Al2O3 membranes were also characterized and the permeabilities and permselectivities of H2, N2, and CO2 were measured by the variable volume method. In parallel with the experimental analysis, the necessary mathematical models were developed to describe the operation of the catalytic membrane reactor and to compare its performance with the conventional reactor. .


Author(s):  
Ping Luo ◽  
Zhi Xu ◽  
Qiankun Zheng ◽  
Jinkun Tan ◽  
Zhicheng Zhang ◽  
...  

The application of catalytic membrane reactors (CMRs) based on perovskite-type oxygen-permeable membrane has been greatly limited by the instability of membrane material. In this study, A-site deficient perovskite La0.8Ce0.1Ni0.4Ti0.6O3-δ (LCNT)...


1993 ◽  
Vol 96 (1) ◽  
pp. 108
Author(s):  
Ying L. Becker ◽  
Anthony G. Dixon ◽  
William R. Moser ◽  
Yi Hua Ma

MRS Bulletin ◽  
1999 ◽  
Vol 24 (3) ◽  
pp. 46-49 ◽  
Author(s):  
Yi Hua Ma

The development of high-temperature processes and tighter environmental regulations requires utilization of efficient gas-separation processes that will provide high fluxes, high selectivity of separation, and the ability to operate at elevated temperatures. Dense inorganic membranes and membrane reactors are especially well suited for high-temperature reactions and separations, due in part to their thermal stability and high separation selectivity (in theory, infinite). Furthermore, membrane reactors offer an inherent advantage of combining reaction, product concentration, and separation in a single-unit operation for the improvement of process economics and waste minimization.The classification of membrane reactors can either be by membrane material and geometry or by the configuration of the reactor. Porous and dense membranes in both tubular and disk forms have been used for membrane reactors. The membrane can either be catalytically active (catalytic membrane reactor [CMR]) or simply act as a separation medium. In the latter case, the catalyst is packed in the reactor, whose walls are formed by the membrane (packed-bed membrane reactor [PBMR]). In addition, if the membrane is also catalytically active, the reactor is called a packed-bed catalytic membrane reactor (PBCMR).The principal materials from which porous inorganic (ceramic) membranes are made are alumina, zirconia, and glass. Alumina and zirconia membranes are usually asymmetric and composite, with a porous support (0.5–2.0 mm thick) for mechanical strength and one or more thin layers for carrying out separations.On the other hand, glass membranes, such as Vycor and microporous glass, have symmetric pores. Materials commonly used as the porous support are alumina, granular carbon, sintered metal, and silicon carbide.


Hydrogen ◽  
2021 ◽  
Vol 2 (3) ◽  
pp. 362-376
Author(s):  
Ekaterina V. Shelepova ◽  
Aleksey A. Vedyagin

The hydrogen economy is expected to dominate in the nearest future. Therefore, the most hydrogen-containing compounds are considered as potential pure hydrogen sources in order to achieve climate neutrality. On the other hand, alkanes are widely used to produce industrially important monomers via various routes, including dehydrogenation processes. Hydrogen is being produced as a by-product of these processes, so the application of efficient separation of hydrogen from the reaction mixture can give double benefits. Implementation of the dehydrogenation processes in the catalytic membrane reactor is that case. Since the use of dense metal membranes, which possess the highest perm-selectivity towards hydrogen, is complicated in practice, the present research is aimed at the optimization of the porous membrane characteristics. By means of a mathematical modeling approach, the effects of pore diameter on the hydrogen productivity and purity for the cases of ethane and propane dehydrogenation processes were analyzed. The pore size value of 0.45 nm was found to be crucial as far as the diffusion of both the alkane and alkene molecules through the membrane takes place.


2016 ◽  
Vol 4 (40) ◽  
pp. 15316-15319 ◽  
Author(s):  
Lie Meng ◽  
Masakoto Kanezashi ◽  
Xin Yu ◽  
Toshinori Tsuru

We achieved an enhanced conversion in SO3 decomposition via catalytic membrane reactors at 600 °C and provided the first report on the molecular size of the SO3 molecule.


Sign in / Sign up

Export Citation Format

Share Document