scholarly journals An Interval Two-Stage Stochastic Programming Model for Flood Resources Allocation under Ecological Benefits as a Constraint Combined with Ecological Compensation Concept

Author(s):  
Yu Qiu ◽  
Yuan Liu ◽  
Yang Liu ◽  
Yingzi Chen ◽  
Yu Li

The Momoge National Nature Reserve (MNNR) is located at the intersection of Nenjiang and Taoer Rivers in Baicheng City, Jilin Province, where the Taoer River is the main source of water for the nature reserve. However, due to the construction of the water control project in the upper reaches of the Taoer River, the MNNR has been in a state of water shortage for a long time. To guarantee the wetland function of the nature reserve, the government planned to carry out normal and flood water supply from Nenjiang River through the West Water Supply Project of Jilin Province. Therefore, how to improve the utilization of flood resources effectively has become one of the key issues of ecological compensation for the MNNR. In this paper, a flood resources optimal allocation model that is based on the interval two-stage stochastic programming method was constructed, and the corresponding flood resource availability in different flow scenarios of Nenjiang River were included in the total water resources to improve their utilization. The results showed that the proportion of flood resources that were used in the MNNR after optimization was more than 70% under different flow scenarios, among which the proportion of flood resources under a low-flow scenario reached 77%, which was 23% higher than the proposed increase. In addition, the ecological benefits of low, medium, and high flow levels reached the range of 26.30 (106 CNY) to 32.14(106 CNY), 28.21(106 CNY) to 34.49(106 CNY) and 29.41(106 CNY) to 35.94(106 CNY), respectively. According to the results, flood resources significantly reduce the utilization of normal water resources, which can be an effective supplement to the ecological compensation of nature reserves and provide a basis for the distribution of transit flood resources in other regions.

2018 ◽  
Vol 28 (3) ◽  
pp. 1107-1124 ◽  
Author(s):  
Tooraj Khosrojerdi ◽  
Seyed Hamed Moosavirad ◽  
Shahram Ariafar ◽  
Mahnaz Ghaeini-Hessaroeyeh

2015 ◽  
Vol 15 (4) ◽  
pp. 817-824 ◽  
Author(s):  
Jing Peng ◽  
Ximin Yuan ◽  
Lan Qi ◽  
Qiliang Li

Water resources supply and demand has become a serious problem. Water resources allocation is usually a multi-objective problem, and has been of concern for many researchers. In the north of China, the lack of water resources in the Huai River Basin has handicapped the development of the economy, especially badly in the low-flow period. So it is necessary to study water resources allocation in this area. In this paper, a multi-objective dynamic water resources allocation model has been developed. The developed model took the overall satisfaction of water users in a time interval as the objective function, applied an improved simplex method to solve the calculation, considered the overall users' satisfaction variation with time, and followed the principle that the variation of the system satisfaction within adjacent periods of time must be minimal. The established model was then applied to the Huai River, for the present situation (2010), short-term (2020) and long-term (2030) planning timeframes. From the calculation results, the overall satisfaction in late May and mid September in 2030 was 0.65 and 0.70. After using the model allocation optimization, the overall satisfaction was improved, increasing to 0.78 and 0.79, respectively, thus achieving the dynamic balance optimization of water resources allocation in time and space. This model can provide useful decision support in water resources allocation, when it is used to alleviate water shortages occurring in the low-flow period.


Author(s):  
Hang Li ◽  
Xiao-Ning Qu ◽  
Jie Tao ◽  
Chang-Hong Hu ◽  
Qi-Ting Zuo

Abstract China is actively exploring water resources management considering ecological priorities. The Shaying River Basin (Henan Section) serves as an important grain production base in China. However, conflicts for water between humans and the environment are becoming increasingly prominent. The present study analyzed the optimal allocation of water while considering ecological priorities in the Shaying River Basin (Henan Section). The ecological water demand was calculated by the Tennant and the representative station methods; then, based on the predicted water supply and demand in 2030, an optimal allocation model was established, giving priority to meeting ecological objectives while including social and comprehensive economic benefit objectives. After solving the model, the optimal results of three established schemes were obtained. This revealed that scheme 1 and scheme 2 failed to satisfy the water demand of the study area in 2030 by only the current conditions and strengthening water conservation, respectively. Scheme 3 was the best scheme, which could balance the water supply and demand by adding new water supply based on strengthening water conservation and maximizing the benefits. Therefore, the actual water allocation in 2030 is forecast to be 7.514 billion (7.514 × 109) m3. This study could help basin water management departments deal with water use and supply.


Sign in / Sign up

Export Citation Format

Share Document