scholarly journals Key Factors Identification and Risk Assessment for the Stability of Deep Surrounding Rock in Coal Roadway

Author(s):  
Dongmei Huang ◽  
Weijun Li ◽  
Xikun Chang ◽  
Yunliang Tan

In order to evaluate the stability of deep surrounding rock, all of the affecting factors should be theoretically identified. However, some factors have slight impacts on the stability of deep surrounding rock compared with others. To conduct an effective risk assessment, key factors should be first extracted. The analytic hierarchy process (AHP) and grey relation analysis (GRA) methods are integrated to determine the key factors. First, the AHP method is applied to sort the factors by calculating the weights of them. Seven out of fifteen factors are extracted as the key factors, which account for 80% of the weights. Further, the GCA method is used to validate the effects of these key factors by analyzing the correlation between the performance of each factor and that of the reference. Considering the influence of these key factors and experts’ judgements, the multilevel fuzzy comprehensive evaluation method is adopted to obtain the risk level of the deep surrounding rock stability. Finally, the risk assessment of the deep surrounding rock in the E-Zhuang coal mine of Chinese Xinwen Mining Area illustrates the operability of the proposed method.

2013 ◽  
Vol 438-439 ◽  
pp. 1612-1618
Author(s):  
Yong Jia Song ◽  
Cong Cong Jin ◽  
Xian Cai Zhang ◽  
Jing Li

This paper proposes a new risk assessment model on account of the fuzziness and uncertainty of risk factors in the reservoir after earthquake. The paper adopts methods of information entropy and fuzzy mathematics to assess risk level of the model. After analyzing the statistical data of earthquake-damaged reservoirs, we present comprehensive weight composed of importance and improved entropy weight. Base on comprehensive weight, we can adopt membership function to establish single factor evaluation of the model. Moreover, we combine fuzzy weighting method to assess risk level of a reservoir after earthquake. The result shows that risk level of the reservoir is high-risk. The case study verifies the practicability and rationality of the risk assessment method. Therefore, the method could be applied in the emergency rescue and reinforcement for reservoir after earthquake.


2011 ◽  
Vol 243-249 ◽  
pp. 6312-6318
Author(s):  
Ge Liu ◽  
Feng Li

According to the characteristics of subway construction in Tianjin, a risk assessment indicator system has been established in subway construction. On the basis of traditional AHP (Analytic Hierarchy Process), the introduction of the concept of triangular fuzzy numbers evaluates the weight of risk factors in a more accurate and objective way. Adopting a fuzzy comprehensive evaluation mathematical model, by constructing membership matrix, the metro construction is not difficult to quantify the risk factors with the scientific evaluation methods. It can be proved that fuzzy comprehensive evaluation method used in subway construction process is a scientific, effective evaluation method.


2012 ◽  
Vol 204-208 ◽  
pp. 3-9
Author(s):  
Qi Lang Le

Based on the research of interlayer-gliding structures in Panbei and Panji No.1 coal mine that are located in the each wing of Panji anticline, the Panji mining area is divided into 9 main interlayer-gliding areas and 29 sub-regions. The results indicate that the interlayer-gliding structures mainly developed in the anticline wings, which show obvious symmetry at the type and distribution. The types of the interlayer-gliding structures are fault-sliding and corrugation type in the wings and fracture type in the core area. The type and manifestation of the interlayer-gliding structures also show symmetry in the similar depth. From up to down, the interlayer-gliding type show obvious regularity that fracture type is mainly developed in the shallow area, down is fault-sliding type and corrugation type is mainly developed in the deep or the interchange of the faults. Take fuzzy comprehensive evaluation method to evaluate the inter-gliding structure in west area of Panji No.1 coal mine. The results showed that the results from using fuzzy comprehensive assessment were similar with the results exposed by coal mine. Good effects were obtained for predicting the development intensity of the seam-gliding structure in deep unmined areas in combination with geological conditions of coal mine, providing references for production arrangement of coal mine.


2014 ◽  
Vol 1070-1072 ◽  
pp. 1486-1490
Author(s):  
Yin Fang ◽  
Zhi Qiang Zhao ◽  
Chun Cheng Gao ◽  
Yong Dai ◽  
Shu Hong Shi

Trading regulatory risk arises prominently in the preliminary formulation of a unified and interconnected electricity market in China. Risk indices, evaluation models and methods as well as index weights are three important aspects of a comprehensive trading regulatory risk evaluation. In this paper, firstly, on the basis of the current electricity market environment in China, systematic trading regulatory risk indices used to quantify the risk level of the unified and interconnected electricity market are established. Secondly, evaluation models and a evaluation method of the trading regulatory risk are developed on the basis of synthesis of fuzzy inference and analytic hierarchy process (AHP). The fuzzy set approach is employed to identify the membership degree of each index to various risk levels, while the AHP is used to acquire the weights of the proposed trading regulatory risk indices. Finally, a simulation based case study on the trading regulatory risk evaluation is presented to illustrate the effectiveness of the proposed indices and the evaluation method.


2022 ◽  
Vol 9 ◽  
Author(s):  
Feng Cai ◽  
Lingling Yang ◽  
Yuan Yuan ◽  
Farhad Taghizadeh-Hesary

Coal quality rating can help reduce greenhouse gas emissions, solving the global warming problem. It becomes more important as the carbon neutrality by the mid-21st century agreement is accepted by 195 countries, including China. In this paper, an improved fuzzy comprehensive evaluation method is introduced for coal quality rating. The data used in this work are of the Hostolgoi coalfield of the Xinjiang Province of China. Six industrial analysis indicators are determined as evaluation factors by taking the coal samples of different coal seam depths in the mining area. The super-standard multiple methods and the double-weight super-standard weighting method are combined to form a comprehensive weight. The results show that most of the coal samples of this coal mine are at grades I–II, and the overall coal is with good-quality stability. The evaluation results can improve the coal utilization efficiency and provide scientific guidance for evaluating and exploiting coal resources in coal geological exploration.


2021 ◽  
Vol 248 ◽  
pp. 03020
Author(s):  
Zhuang Guofeng

The quality of road and bridge engineering is directly related to the safety of the transportation industry. In the construction of highway bridges, it is particularly important to strictly control the construction quality. Combining the analytic hierarchy process and the fuzzy comprehensive evaluation method, the AHP-fuzzy comprehensive evaluation method is used to obtain the current road bridge construction safety risk level. According to the different risk levels, effective measures should be taken to avoid unsafe accidents. On this basis, historical risk cases can be analyzed to find problems in the safety assessment of highways and bridges, and effective construction safety management and control measures can be put forward to ensure the vigorous development of my country’s highway and bridge industry.


Sign in / Sign up

Export Citation Format

Share Document