scholarly journals Privacy-Preserving Process Mining in Healthcare

Author(s):  
Anastasiia Pika ◽  
Moe T. Wynn ◽  
Stephanus Budiono ◽  
Arthur H.M. ter Hofstede ◽  
Wil M.P. van der Aalst ◽  
...  

Process mining has been successfully applied in the healthcare domain and has helped to uncover various insights for improving healthcare processes. While the benefits of process mining are widely acknowledged, many people rightfully have concerns about irresponsible uses of personal data. Healthcare information systems contain highly sensitive information and healthcare regulations often require protection of data privacy. The need to comply with strict privacy requirements may result in a decreased data utility for analysis. Until recently, data privacy issues did not get much attention in the process mining community; however, several privacy-preserving data transformation techniques have been proposed in the data mining community. Many similarities between data mining and process mining exist, but there are key differences that make privacy-preserving data mining techniques unsuitable to anonymise process data (without adaptations). In this article, we analyse data privacy and utility requirements for healthcare process data and assess the suitability of privacy-preserving data transformation methods to anonymise healthcare data. We demonstrate how some of these anonymisation methods affect various process mining results using three publicly available healthcare event logs. We describe a framework for privacy-preserving process mining that can support healthcare process mining analyses. We also advocate the recording of privacy metadata to capture information about privacy-preserving transformations performed on an event log.

2021 ◽  
Author(s):  
Esma Ergüner Özkoç

Data mining techniques provide benefits in many areas such as medicine, sports, marketing, signal processing as well as data and network security. However, although data mining techniques used in security subjects such as intrusion detection, biometric authentication, fraud and malware classification, “privacy” has become a serious problem, especially in data mining applications that involve the collection and sharing of personal data. For these reasons, the problem of protecting privacy in the context of data mining differs from traditional data privacy protection, as data mining can act as both a friend and foe. Chapter covers the previously developed privacy preserving data mining techniques in two parts: (i) techniques proposed for input data that will be subject to data mining and (ii) techniques suggested for processed data (output of the data mining algorithms). Also presents attacks against the privacy of data mining applications. The chapter conclude with a discussion of next-generation privacy-preserving data mining applications at both the individual and organizational levels.


2021 ◽  
Vol 14 (2) ◽  
pp. 26
Author(s):  
Na Li ◽  
Lianguan Huang ◽  
Yanling Li ◽  
Meng Sun

In recent years, with the development of the Internet, the data on the network presents an outbreak trend. Big data mining aims at obtaining useful information through data processing, such as clustering, clarifying and so on. Clustering is an important branch of big data mining and it is popular because of its simplicity. A new trend for clients who lack of storage and computational resources is to outsource the data and clustering task to the public cloud platforms. However, as datasets used for clustering may contain some sensitive information (e.g., identity information, health information), simply outsourcing them to the cloud platforms can't protect the privacy. So clients tend to encrypt their databases before uploading to the cloud for clustering. In this paper, we focus on privacy protection and efficiency promotion with respect to k-means clustering, and we propose a new privacy-preserving multi-user outsourced k-means clustering algorithm which is based on locality sensitive hashing (LSH). In this algorithm, we use a Paillier cryptosystem encrypting databases, and combine LSH to prune off some unnecessary computations during the clustering. That is, we don't need to compute the Euclidean distances between each data record and each clustering center. Finally, the theoretical and experimental results show that our algorithm is more efficient than most existing privacy-preserving k-means clustering.


Large amounts of data collected by many organizations under-goes data mining for various purposes like analysis and prediction. During data mining tasks, the sensitive information may be losing its privacy. Hence, Privacyprotection or preservation is becomes major issue for the organizations. Publishing data or sharing information for mining with Privacypreservation is possible through Privacypreserve data mining technique (PPDM). Existing techniques are not able to withstand for some attacks and some suffers with data misfortune. In our paper we conventional an effective and combinational approach for security safeguarding in information mining. Our approach with can withstand from different kinds of assaults and limits data misfortune and increases data re-usability with data reconstruction capability


2008 ◽  
pp. 2379-2401 ◽  
Author(s):  
Igor Nai Fovino

Intense work in the area of data mining technology and in its applications to several domains has resulted in the development of a large variety of techniques and tools able to automatically and intelligently transform large amounts of data in knowledge relevant to users. However, as with other kinds of useful technologies, the knowledge discovery process can be misused. It can be used, for example, by malicious subjects in order to reconstruct sensitive information for which they do not have an explicit access authorization. This type of “attack” cannot easily be detected, because, usually, the data used to guess the protected information, is freely accessible. For this reason, many research efforts have been recently devoted to addressing the problem of privacy preserving in data mining. The mission of this chapter is therefore to introduce the reader in this new research field and to provide the proper instruments (in term of concepts, techniques and example) in order to allow a critical comprehension of the advantages, the limitations and the open issues of the Privacy Preserving Data Mining Techniques.


2016 ◽  
Vol 7 (3) ◽  
pp. 1-9 ◽  
Author(s):  
Sahar A. El-Rahman Ismail ◽  
Dalal Al Makhdhub ◽  
Amal A. Al Qahtani ◽  
Ghadah A. Al Shabanat ◽  
Nouf M. Omair ◽  
...  

We live in an information era where sensitive information extracted from data mining systems is vulnerable to exploitation. Privacy preserving data mining aims to prevent the discovery of sensitive information. Information hiding systems provide excellent privacy and confidentiality, where securing confidential communications in public channels can be achieved using steganography. A cover media are exploited using steganography techniques where they hide the payload's existence within appropriate multimedia carriers. This paper aims to study steganography techniques in spatial and frequency domains, and then analyzes the performance of Discrete Cosine Transform (DCT) based steganography using the low frequency and the middle frequency to compare their performance using Peak Signal to Noise Ratio (PSNR) and Mean Square Error (MSE). The experimental results show that middle frequency has the larger message capacity and best performance.


Author(s):  
Mafruz Ashrafi ◽  
David Taniar ◽  
Kate Smith

With the advancement of storage, retrieval, and network technologies today, the amount of information available to each organization is literally exploding. Although it is widely recognized that the value of data as an organizational asset often becomes a liability because of the cost to acquire and manage those data is far more than the value that is derived from it. Thus, the success of modern organizations not only relies on their capability to acquire and manage their data but their efficiency to derive useful actionable knowledge from it. To explore and analyze large data repositories and discover useful actionable knowledge from them, modern organizations have used a technique known as data mining, which analyzes voluminous digital data and discovers hidden but useful patterns from such massive digital data. However, discovery of hidden patterns has statistical meaning and may often disclose some sensitive information. As a result, privacy becomes one of the prime concerns in the data-mining research community. Since distributed data mining discovers rules by combining local models from various distributed sites, breaching data privacy happens more often than it does in centralized environments.


Author(s):  
Igor Nai Fovino

Intense work in the area of data mining technology and in its applications to several domains has resulted in the development of a large variety of techniques and tools able to automatically and intelligently transform large amounts of data in knowledge relevant to users. However, as with other kinds of useful technologies, the knowledge discovery process can be misused. It can be used, for example, by malicious subjects in order to reconstruct sensitive information for which they do not have an explicit access authorization. This type of “attack” cannot easily be detected, because, usually, the data used to guess the protected information, is freely accessible. For this reason, many research efforts have been recently devoted to addressing the problem of privacy preserving in data mining. The mission of this chapter is therefore to introduce the reader in this new research field and to provide the proper instruments (in term of concepts, techniques and example) in order to allow a critical comprehension of the advantages, the limitations and the open issues of the Privacy Preserving Data Mining Techniques.


Author(s):  
Nancy Victor ◽  
Daphne Lopez

Data privacy plays a noteworthy part in today's digital world where information is gathered at exceptional rates from different sources. Privacy preserving data publishing refers to the process of publishing personal data without questioning the privacy of individuals in any manner. A variety of approaches have been devised to forfend consumer privacy by applying traditional anonymization mechanisms. But these mechanisms are not well suited for Big Data, as the data which is generated nowadays is not just structured in manner. The data which is generated at very high velocities from various sources includes unstructured and semi-structured information, and thus becomes very difficult to process using traditional mechanisms. This chapter focuses on the various challenges with Big Data, PPDM and PPDP techniques for Big Data and how well it can be scaled for processing both historical and real-time data together using Lambda architecture. A distributed framework for privacy preservation in Big Data by combining Natural language processing techniques is also proposed in this chapter.


2019 ◽  
Vol 27 (4) ◽  
pp. 464-478
Author(s):  
Michael Becker ◽  
Rüdiger Buchkremer

Purpose The purpose of this study is to examine whether the compliance management activities in the risk management environment of financial institutions can be enhanced using a Process Mining application. Design/methodology/approach In this research, an implementation procedure for a selected Process Mining application is developed and evaluated at a financial institution in Germany. Findings The evaluation of the process data with the Process Mining application Disco shows that the compliance of the real-life execution of business processes can be monitored in real-time. Moreover, potential non-compliant activities and durations can be analysed in a detailed manner. Research limitations/implications When the research results are regarded, it must be considered that a general condition for the usage of a Process Mining application is that the process data is available and exportable in the required format and that data privacy regulations are fulfilled. Originality/value This research presents a practical use case for the implementation of a Process Mining application at the risk management department of financial institutions. It shows the value of using a technical application to carry out tedious tasks that are usually executed manually. This value is discussed and compared with the aim to help financial institutions in determining how the effectiveness and efficiencies of compliance management activities can be improved. Therefore, this research can be taken as a foundation for the practical implementation of a Process Mining application at financial institutions.


Sign in / Sign up

Export Citation Format

Share Document