scholarly journals Monitoring Alveolar Ridge Remodelling Post-Extraction Using Sequential Intraoral Scanning over a Period of Four Months

Author(s):  
Khaled E. Ahmed

The potential applications of computer-aided design/computer-aided manufacturing (CAD/CAM) and intraoral scanning exceed the delivery of standard prosthodontic interventions. The aim of this study was to clinically present a developed assessment technique, that relies on the use of sequential intraoral scanning, three-dimensional superimposition, and 2D and 3D deviation analyses based on a standardised protocol, as an auxiliary tool in monitoring dimensional changes of residual ridge post-extraction with a follow-up period of four months.

2020 ◽  
pp. 606-612
Author(s):  
S.V. KAZUMYAN ◽  
◽  
I.A. DEGTEV ◽  
V.V. BORISOV ◽  
K.A. ERSHOV

The article represents the information that in the age of digital dentistry, virtual treatment planning is becoming an increasingly important element of dental practice. With new technological advances in computer-aided design and computer-aided manufacturing (CAD/CAM) of dental restorations, predictable interdisciplinary treatment using a reverse planning approach appears to be beneficial and feasible. It is noted that thanks to achievements in medical imaging and computer programming, 2D axial images can be processed into other reformatted representations (sagittal and coronal) and three-dimensional (3D) virtual models representing the patient’s anatomy. It is shown that telemedicine occupies a special place among modern technologies in dentistry, which is used both for remote consultation and for the successful treatment of patients. Keywords: Virtual assistants , virtual nurses, voice technologies, artificial intelligence, virtual reality, 3D printing, telemedicine.


2021 ◽  
Vol 6 (11) ◽  

Background: Most dental trauma in children and adolescents involve anterior tooth fractures. Advancements in ceramics technology and in computer-aided design/computer-aided manufacturing (CAD/CAM) systems, have led to the technological abilities to produce single all-ceramic crowns with high biocompatibility, esthetics, and optimal mechanical properties. However, there is no information regarding the use of this technique in children. Case report:Treatment of extensive crown fractures on an 11 years old patient using a chairside CAD/CAM technology. The teeth were scanned and the restorations were fabricated using the manufacturing unit of the CAD/CAM system and glazed to the appropriate tooth color. At a follow up visits the restorations kept their strength and esthetic appearance (one year follow up). Conclusion: The digital restoration treatment is especially suitable for treating children with dental trauma. It has the advantage of better esthetic, functional and durable results compering to conventional restorations, and it often requires only a single session.


2006 ◽  
Vol 53 (1) ◽  
pp. 42-53 ◽  
Author(s):  
Aleksandar Todorovic ◽  
Vojkan Lazic

CAD/CAM technology (Computer Aided Design / Computer Aided Manufacturing) in the matter of fact helps in design and development of two-dimensional or three-dimensional models and their realization on numerical controlled machines. The key to direct or indirect CAD/CAM dental restorations is the measurement of dental preparation in the mouth or on the plaster die. The aim of this paper is to describe the possibilities and the way of function of different computer aided inspection (CAI) systems as a first part of CAD/CAM systems. Different researchers have presented several approaches of methods for three dimensional (3D) measurement. Today, for chairside dental treatment, only the optical method of measurement has lead to satisfactory results in practice. Laboratory CAD/CAM systems use mechanical and optical technologies for 3D measurement. Optical impression grows as a leader of CAI segment of almost every new CAD/CAM system. The most important properties of 3D scanners are: accuracy, volume and speed of measurement and ergonomy of instrument. .


Author(s):  
G Britton ◽  
T S Beng ◽  
Y Wang

This paper describes three approaches for virtual product development of plastic injection moulds. The first is characterized by the use of three-dimensional computer aided design (CAD) for product design, two-dimensional drafting for mould design and three-dimensional computer aided design/manufacture (CAD/CAM) for mould manufacture. The second is characterized by the use of three-dimensional CAD models by all three participants, but between any two participants some form of file conversion is normally required because different CAD systems are used. The first two approaches share one common feature: the models are passed serially from the product designer to the mould designer and on to the toolmaker. They represent current practice in industry. The third approach is a proposed collaborative design process. Participants can work concurrently on the same model, sharing their knowledge and experience. The process is currently being refined and will be validated later this year with a prototype system based on Unigraphics iMAN software.


2020 ◽  
Vol 45 (4) ◽  
pp. E176-E184
Author(s):  
SM Munusamy ◽  
AU Yap ◽  
HL Ching ◽  
NA Yahya

Clinical Relevance Computer-aided design/computer-aided manufacturing (CAD/CAM) composite resins are susceptible to degradation by dietary solvents. Dietary counselling is prudent when placing such CAD/CAM restorations. SUMMARY This study determined the effect of dietary solvents on the surface roughness (Ra) of direct, indirect, and computer-aided design/computer-aided manufacturing (CAD/CAM) dental composites. The materials evaluated were a direct composite (Filtek Z350 XT [FZ]), an indirect composite (Shofu Ceramage [CM]), and four CAD/CAM composites (Lava Ultimate [LU], Shofu Block HC [HC], Cerasmart [CS], and Vita Enamic [VE]). Specimens (12×14×1.5 mm) of each material were prepared, measured for baseline Ra, ranked, divided into six groups (n=12), and conditioned in the following media for 1 week at 37°C: air (control), distilled water, 0.02 N citric acid, 0.02 N lactic acid, heptane, and 50% ethanol-water solution. The composite specimens were then subjected to postconditioning Ra testing using an optical three-dimensional surface analyzer (G4e, Alicona Imaging GmbH, Raaba, Austria). Inter-medium and inter-material comparisons were performed with one-way analysis of variance and post hoc Bonferroni test at a significance level of α=0.05. Mean Ra values ranged from 0.086 ± 0.004 μm to 0.153 ± 0.005 μm for the various material/medium combinations. For all materials, conditioning in air (control) and distilled water generally resulted in significantly lower mean Ra than exposure to other dietary solvents. Conditioning in citric acid presented the roughest surfaces for FZ, CM, and CS. For LU, HC, and VE, exposure to lactic acid, heptane, and ethanol solution resulted in the highest mean Ra. Regardless of conditioning media, FZ had the highest and VE the lowest mean Ra compared with other composites. The CAD/CAM composites remained susceptible to surface degradation by dietary solvents despite their industrial polymerization.


2018 ◽  
Vol 2018 ◽  
pp. 1-6
Author(s):  
Saied Nokar ◽  
Amirreza Hendi ◽  
Yasamin Babaee Hemmati ◽  
Mehran Falahchai

Severe forms of attrition are frequently found in patients with no or insufficient posterior occlusal support. Management of such patients using fixed or removable prostheses is a complex procedure and is still a challenge for clinicians. The present clinical report describes step by step full mouth rehabilitation of a patient with severely worn dentition using computer-aided design/computer-aided manufacturing- (CAD/CAM-) generated wax patterns, milled zirconia frameworks, and fabrication of removable partial denture (RPD) abutments using a digital-conventional method. The results were satisfactory during 18 months of follow-up.


2020 ◽  
Vol 12 (3) ◽  
Author(s):  
Chayanin Angthong ◽  
Prasit Rajbhandari

Severe damage and bone loss of the talus are problematic issues because of its unique shape, function, and characteristics. This present study’s objective is to propose the process of customized total talar prosthesis manufacturing, using three-dimensional (3D) Computer-Aided Design (CAD) with Computer Numerical Control (CNC) production along with evaluation of the results of total talar prosthesis replacement with or without ankle ligament reconstruction in patients with severe conditions of talus. The case series included five patients (mean age: 27.6 years) with severe talar loss or damage. The mean follow-up time was 17.8±8.4 months. Related complications were: i) mild subsidence in 1 patient (20%) and ii) periprosthetic fracture in another patient (20%). The mean clinical scores including VAS-FA and SF-36 were improved following surgeries. Customized total talar prosthesis appears to provide satisfactory outcomes for the treatment of severe talar loss or damage at a short-term follow-up.


2021 ◽  
Vol 11 ◽  
pp. 48-55
Author(s):  
Prajak Jariyapongpaiboon ◽  
Jirawan Chartpitak ◽  
Jaturong Jitsaard

Objectives: Infrazygomatic crest (IZC) surgical guides have been employed to prevent any avoidable complications during miniscrew insertion. The purpose of this study was to evaluate the accuracy of IZC miniscrew placement when using a surgical-guide developed by computer-aided design and manufacturing (CAD/CAM) techniques. Materials and Methods: Ten patients were scanned with cone-beam computed tomography for three-dimensional (3D) planning of IZC miniscrew placements. The upper arches were scanned separately, and virtual miniscrews were placed in the position planned by 3D software. The CAD/CAM surgical guides were designed and fabricated individually to enable accurate miniscrew placement. Subsequently, 20 self-drilling miniscrews were inserted at the right and left IZC areas using 5 CAD/CAM surgical guides (CS group, n = 10) and direct insertion (DI group, n = 10), respectively. Pre- and post-operative digital model images were compared, actual and planned miniscrew positions were superimposed and measured for 3D angular and distance deviations in the two groups. Comparisons between groups were made using the Kruskal–Wallis test. Results: In the CS group, the median coronal and sagittal angular deviations were 2.95 degrees (range 0.34–5.26 degrees) and 2.05 degrees (range 0.38–4.08 degrees), respectively, while the median coronal and apical deviations were 0.39 mm (range 0.24–0.51 mm) and 0.50 mm (range 0.16–0.66 mm). These deviations differed significantly from those of the DI group. Conclusion: The IZC CAD/CAM surgical guide has made it possible to control miniscrew placement with high precision.


2014 ◽  
Vol 40 (5) ◽  
pp. 561-569 ◽  
Author(s):  
Francesco Mangano ◽  
Aldo Macchi ◽  
Jamil Awad Shibli ◽  
Giuseppe Luongo ◽  
Giovanna Iezzi ◽  
...  

Several procedures have been proposed to achieve maxillary ridge augmentation. These require bone replacement materials to be manually cut, shaped, and formed at the time of implantation, resulting in an expensive and time-consuming process. In the present study, we describe a technique for the design and fabrication of custom-made scaffolds for maxillary ridge augmentation, using three-dimensional computerized tomography (3D CT) and computer-aided design/computer-aided manufacturing (CAD/CAM). CT images of the atrophic maxillary ridge of 10 patients were acquired and modified into 3D reconstruction models. These models were transferred as stereolithographic files to a CAD program, where a virtual 3D reconstruction of the alveolar ridge was generated, producing anatomically shaped, custom-made scaffolds. CAM software generated a set of tool-paths for manufacture by a computer-numerical-control milling machine into the exact shape of the reconstruction, starting from porous hydroxyapatite blocks. The custom-made scaffolds were of satisfactory size, shape, and appearance; they matched the defect area, suited the surgeon's requirements, and were easily implanted during surgery. This helped reduce the time for surgery and contributed to the good healing of the defects.


Author(s):  
Wu-Jung Tsai ◽  
Jyh-Jone Lee

Abstract In this paper, we developed an automated system for the design and manufacture of three-dimensional cams. This system incorporates the computer-aided design, manufacturing and inspection three sequences into one automated process. First, a computer package employing the theory of gearing is developed for synthesizing and animating cam mechanisms. Then, a module for generating NC programs for a five-axis CNC machine to manufacture spatial cams is established. Finally, a computer-aided inspection system for measuring cam profile is introduced. This automated CAD/CAM/CAI system is illustrated with an example on the design of a roller gear cam.


Sign in / Sign up

Export Citation Format

Share Document