scholarly journals Core Temperature Measurement—Principles of Correct Measurement, Problems, and Complications

Author(s):  
Hubert Hymczak ◽  
Aleksandra Gołąb ◽  
Konrad Mendrala ◽  
Dariusz Plicner ◽  
Tomasz Darocha ◽  
...  

Core temperature reflects the temperature of the internal organs. Proper temperature measurement is essential to diagnose and treat temperature impairment in patients. However, an accurate approach has yet to be established. Depending on the method used, the obtained values may vary and differ from the actual core temperature. There is an ongoing debate regarding the most appropriate anatomical site for core temperature measurement. Although the measurement of body core temperature through a pulmonary artery catheter is commonly cited as the gold standard, the esophageal temperature measurement appears to be a reasonable and functional alternative in the clinical setting. This article provides an integrative review of invasive and noninvasive body temperature measurements and their relations to core temperature.

1983 ◽  
Vol 55 (1) ◽  
pp. 27-31 ◽  
Author(s):  
S. R. Coleshaw ◽  
R. N. Van Someren ◽  
A. H. Wolff ◽  
H. M. Davis ◽  
W. R. Keatinge

Volunteers′ body core temperatures were lowered by immersion in water at 15 degrees C. Aspects of cognitive function were subsequently tested after rewarming had been started in water at 41 degrees C when their skin was warm and they felt comfortable but their body core temperature remained low. Memory registration was found to be impaired progressively when core temperature fell from about 36.7 degrees C; at core temperatures of 34-35 degrees C the impairment caused loss of approximately 70% of data that could normally be retained. However, recall of previously learned data was not impaired at these core temperatures. On a two-digit calculation test, speed of performance was impaired by about 50% at a core temperature of 34-35 degrees C, but provided enough time was available, accuracy of performance was not reduced.


2021 ◽  
Vol 12 ◽  
pp. 204062232199725
Author(s):  
Antonio Casas-Barragán ◽  
Francisco Molina ◽  
Rosa María Tapia-Haro ◽  
María Carmen García-Ríos ◽  
María Correa-Rodríguez ◽  
...  

Our aim was to analyse body core temperature and peripheral vascular microcirculation at skin hypothenar eminence of the hands and its relationship to symptoms in fibromyalgia syndrome (FMS). A total of 80 FMS women and 80 healthy women, matched on weight, were enrolled in this case–control study. Thermography and infrared thermometer were used for evaluating the hypothenar regions and core body temperature, respectively. The main outcome measures were pain pressure thresholds (PPTs) and clinical questionnaires. Significant associations were observed between overall impact [ β = 0.033; 95% confidence interval (95%CI) = 0.003, 0.062; p = 0.030], daytime dysfunction ( β = 0.203; 95%CI = 0.011, 0.395; p = 0.039) and reduced activity ( β = 0.045; 95%CI = 0.005, 0.085; p = 0.029) and core body temperature in FMS women. PPTs including greater trochanter dominant ( β = 0.254; 95%CI = 0.003, 0.504; p = 0.047), greater trochanter non-dominant ( β = 0.650; 95%CI = 0.141, 1.159; p = 0.013), as well as sleeping medication ( β = −0.242; 95%CI = −0.471, −0.013; p = 0.039) were also associated with hypothenar eminence temperature. Data highlighted that FMS women showed correlations among body core temperature and hand temperature with the clinical symptoms.


2001 ◽  
Vol 2 (4) ◽  
pp. 277-291 ◽  
Author(s):  
Charlotte A. Richmond

Patients with fever have a predisposition to experience dehydration, which may alter their thermoregulatory responses to elevated body temperature. In view of the recent discovery of the antipyretic activity of arginine vasopressin (AVP), it is possible that dehydration has a beneficial role during fever. Dehydration may enhance endogenous antipyresis by stimulating AVP release, making aggressive fluid replacement, which may inhibit AVP release, undesirable during fever. This study addressed the effects of manipulation of hydration status on temperature and cardiovascular responses in endotoxin-injected rabbits. Eight unanesthetized chronically instrumented rabbits were exposed to lipopolysaccharide (LPS) while in euhydrated state, after furosemide (5 mg/kg) and 24 hours of water deprivation (dehydrated), after infusion of saline (30 mL/kg) while in euhydrated state (hyperhydrated), and after saline (mL/per overnight body weight loss in grams) while in dehydrated state (rehydrated). Dehydrated rabbits display higher fevers that are biphasic in nature and are accompanied by increased vasoconstriction and duration of mean arterial pressure increases, indicating that activation of antipyretic mechanisms in dehydrated rabbits was not sufficient to reduce body core temperature. In addition, fluid supplementation in euhydrated rabbits did not alter the febrile response; however, a marked decrease in heart rate was noted. Furthermore, fluid supplementation in dehydrated rabbits significantly attenuates the rectal temperature and heart rate response to LPS injection, indicating the possibility that activation of antipyretic mechanisms of AVP in rehydrated rabbits was sufficient to reduce body core temperature. The results suggest that fluid supplementation has a beneficial role in keeping body temperature lower.


2021 ◽  
Vol 3 (3) ◽  
pp. 209-223
Author(s):  
Nayana Shetty

Many sports have a high risk of climatic ailments, such as hypothermia, hyperthermia, and heatstroke. The measurement of a sportsperson's body core temperature (Tc) may have an impact on their performances and it assists them to avoid injuries as well. To avoid complications like electrolyte imbalances or infections, it's essential to precisely measure the core body temperature during targeted temperature control when spontaneous circulation has returned. Previous approaches on the other hand, are intrusive and difficult to use. The usual technique, an oesophageal thermometer, was compared to a disposable non-invasive temperature sensor that used the heat flux methodology. This research indicates that, non-invasive disposable sensors used to measure core body temperature are very reliable when used for targeted temperature control after overcoming a cardiac arrest successfully. The non-invasive method of temperature measurement has somewhat greater accuracy than the invasive approach. The results of this study must be confirmed by more clinical research with various sensor types to figure out if the bounds of agreement could be increased. This will ensure that the findings are accurate based on core temperature.


2017 ◽  
Vol 14 (9) ◽  
pp. 703-711 ◽  
Author(s):  
Dallon T. Lamarche ◽  
Robert D. Meade ◽  
Andrew W. D'Souza ◽  
Andreas D. Flouris ◽  
Stephen G. Hardcastle ◽  
...  

1981 ◽  
Vol 211 (1184) ◽  
pp. 305-319 ◽  

We have found that camels can reduce the water loss due to evaporation from the respiratory tract in two ways: (1) by decreasing the temperature of the exhaled air and (2) by removal of water vapour from this air, resulting in the exhalation of air at less than 100% relative humidity (r. h.). Camels were kept under desert conditions and deprived of drinking water. In the daytime the exhaled air was at or near body core temperature, while in the cooler night exhaled air was at or near ambient air temperature. In the daytime the exhaled air was fully saturated, but at night its humidity might fall to approximately 75% r. h. The combination of cooling and desaturation can provide a saving of water of 60% relative to exhalation of saturated air at body temperature. The mechanism responsible for cooling of the exhaled air is a simple heat exchange between the respiratory air and the surfaces of the nasal passageways. On inhalation these surfaces are cooled by the air passing over them, and on exhalation heat from the exhaled air is given off to these cooler surfaces. The mechanism responsible for desaturation of the air appears to depend on the hygroscopic properties of the nasal surfaces when the camel is dehydrated. The surfaces give off water vapour during inhalation and take up water from the respiratory air during exhalation. We have used a simple mechanical model to demonstrate the effectiveness of this mechanism.


2008 ◽  
Vol 294 (2) ◽  
pp. F309-F315 ◽  
Author(s):  
Joo Lee Cham ◽  
Emilio Badoer

Redistribution of blood from the viscera to the peripheral vasculature is the major cardiovascular response designed to restore thermoregulatory homeostasis after an elevation in body core temperature. In this study, we investigated the role of the hypothalamic paraventricular nucleus (PVN) in the reflex decrease in renal blood flow that is induced by hyperthermia, as this brain region is known to play a key role in renal function and may contribute to the central pathways underlying thermoregulatory responses. In anesthetized rats, blood pressure, heart rate, renal blood flow, and tail skin temperature were recorded in response to elevating body core temperature. In the control group, saline was microinjected bilaterally into the PVN; in the second group, muscimol (1 nmol in 100 nl per side) was microinjected to inhibit neuronal activity in the PVN; and in a third group, muscimol was microinjected outside the PVN. Compared with control, microinjection of muscimol into the PVN did not significantly affect the blood pressure or heart rate responses. However, the normal reflex reduction in renal blood flow observed in response to hyperthermia in the control group (∼70% from a resting level of 11.5 ml/min) was abolished by the microinjection of muscimol into the PVN (maximum reduction of 8% from a resting of 9.1 ml/min). This effect was specific to the PVN since microinjection of muscimol outside the PVN did not prevent the normal renal blood flow response. The data suggest that the PVN plays an essential role in the reflex decrease in renal blood flow elicited by hyperthermia.


2002 ◽  
Vol 80 (3) ◽  
pp. 226-232 ◽  
Author(s):  
Frédéric Canini ◽  
Nadine Simler ◽  
Lionel Bourdon

The effects of MK801 (dizocilpine), a glutamate NMDA receptor antagonist, on thermoregulation in the heat were studied in awake rats exposed to 40°C ambient temperature until their body core temperature reached 43°C. Under these conditions, MK801-treated rats exhibited enhanced locomotor activity and a steady rise in body core temperature, which reduced the heat exposure duration required to reach 43°C. Since MK801-treated rats also showed increased striatal dopaminergic metabolism at thermoneutrality, the role of dopamine in the MK801-induced impairment of thermoregulation in the heat was determined using co-treatment with SCH23390, a dopamine D1 receptor antagonist. SCH23390 normalized the locomotor activity in the heat without any effect on the heat exposure duration. These results suggest that the MK801-induced impairment of thermoregulation in the heat is related to neither a dopamine metabolism alteration nor a locomotor activity enhancement.Key words: heatstroke, NMDA receptor, thermoregulation, dopamine, locomotion.


Sign in / Sign up

Export Citation Format

Share Document