scholarly journals Application of Single-Particle Mass Spectrometer to Obtain Chemical Signatures of Various Combustion Aerosols

Author(s):  
Hee-joo Cho ◽  
Joonwoo Kim ◽  
Nohhyeon Kwak ◽  
Heesung Kwak ◽  
Taewan Son ◽  
...  

A single-particle mass spectrometer (SPMS) with laser ionization was constructed to determine the chemical composition of single particles in real time. The technique was evaluated using various polystyrene latex particles with different sizes (125 nm, 300 nm, 700 nm, and 1000 nm); NaCl, KCl, MgCO3, CaCO3, and Al2O3 particles with different chemical compositions; an internal mixture of NaCl and KCl; and an internal mixture of NaCl, KCl, and MgCl2 with different mixing states. The results show that the SPMS can be useful for the determination of chemical characteristics and mixing states of single particles in real time. The SPMS was then applied to obtain the chemical signatures of various combustion aerosols (diesel engine exhaust, biomass burning (rice straw), coal burning, and cooking (pork)) based on their single-particle mass spectra. Elemental carbon (EC)-rich and EC-organic carbon (OC) particles were the predominant particle types identified in diesel engine exhaust, while K-rich and EC-OC-K particles were observed among rice straw burning emissions. Only one particle type (ash-rich particles) was detected among coal burning emissions. EC-rich and EC-OC particles were observed among pork burning particles. The single-particle mass spectra of the EC or OC types of particles differed among various combustion sources. The observed chemical signatures could be useful for rapidly identifying sources of atmospheric fine particles. In addition, the detected chemical signatures of the fine particles may be used to estimate their toxicity and to better understand their effects on human health.

2008 ◽  
Vol 8 (6) ◽  
pp. 21313-21381 ◽  
Author(s):  
E. S. Cross ◽  
T. B. Onasch ◽  
M. Canagaratna ◽  
J. T. Jayne ◽  
J. Kimmel ◽  
...  

Abstract. We present the first single particle results obtained using an Aerodyne time-of-flight aerosol mass spectrometer coupled with a light scattering module (LS-ToF-AMS). The instrument was deployed at the T1 ground site approximately 40 km northeast of the Mexico City Metropolitan Area (MCMA) as part of the MILAGRO field study in March of 2006. The instrument was operated as a standard AMS from 12–30 March, acquiring average chemical composition and size distributions for the ambient aerosol, and in single particle mode from 27–30 March. Over a 75-h sampling period, 12 853 single particle mass spectra were optically triggered, saved, and analyzed. The correlated optical and chemical detection allowed detailed examination of single particle collection and quantification within the LS-ToF-AMS. The single particle data enabled the mixing states of the ambient aerosol to be characterized within the context of the size-resolved ensemble chemical information. The particulate mixing states were examined as a function of sampling time and most of the particles were found to be internal mixtures containing many of the organic and inorganic species identified in the ensemble analysis. The single particle mass spectra were deconvolved, using techniques developed for ensemble AMS data analysis, into HOA, OOA, NH4NO3, (NH4)2SO4, and NH4Cl fractions. Average single particle mass and chemistry measurements are shown to be in agreement with ensemble MS and PTOF measurements. While a significant fraction of ambient particles were internal mixtures of varying degrees, single particle measurements of chemical composition allowed the identification of time periods during which the ambient ensemble was externally mixed. In some cases the chemical composition of the particles suggested a likely source. Throughout the full sampling period, the ambient ensemble was an external mixture of combustion-generated HOA particles from local sources (e.g. traffic), with number concentrations peaking during morning rush hour (04:00–08:00 LT) each day, and more processed particles of mixed composition from nonspecific sources. From 09:00–12:00 LT all particles within the ambient ensemble, including the locally produced HOA particles, became coated with NH4NO3 due to photochemical production of HNO3. The number concentration of externally mixed HOA particles remained low during daylight hours. Throughout the afternoon the OOA component dominated the organic fraction of the single particles, likely due to secondary organic aerosol formation and condensation. Single particle mass fractions of (NH4)2SO4 were lowest during the day and highest during the night. In one instance, gas-to-particle condensation of (NH4)2SO4 was observed on all measured particles within a strong SO2 plume arriving at T1 from the northwest. Particles with high NH4Cl mass fractions were identified during early morning periods. A limited number of particles (~5% of the total number) with mass spectral features characteristic of biomass burning were also identified.


2020 ◽  
Author(s):  
Xinning Wang ◽  
Xiaofei Wang ◽  
Xin Yang

Abstract. Hygroscopicity plays a crucial role in determining aerosol optical properties and aging processes in the atmosphere. We investigated submicron aerosol hygroscopicity and composition by connecting an aerosol time-of-flight mass spectrometer (ATOFMS) to the downstream of a hygroscopic tandem differential mobility analyzer (HTDMA), to simultaneously characterize hygroscopicities and chemical compositions of ambient aerosols in Shanghai, China. Major particle types, including biomass burning, EC, Dust/Ash, organics particles, cooking particles and sea salt, were shown to have distinct hygroscopicity distributions. It is also found that particles with stronger hygroscopicities were more likely to have higher effective densities. Based on the measured hygroscopicity-composition relations, we developed a statistical method to estimate ambient particle hygroscopicity just from their mass spectra. This method was applied to another ambient ATOFMS dataset sampled from September 12nd to 28th, 2012 in Shanghai, and it is found that ambient particles were present in three major hygroscopicity modes, whose growth factors at relative humidity 85 % peaked at 1.05, 1.42 and 1.60, respectively. The temporal variations of the estimated particle hygroscopicity were consistent with the back-trajectory analysis and atmospheric visibility observations. These hygroscopicity estimation results with single particle mass spectra analysis can provide critical information on particulate water content, particle source apportionment and aging processes.


2013 ◽  
Vol 13 (4) ◽  
pp. 10345-10393
Author(s):  
R. M. Healy ◽  
J. Sciare ◽  
L. Poulain ◽  
M. Crippa ◽  
A. Wiedensohler ◽  
...  

Abstract. Single particle mixing state information can be a powerful tool for assessing the relative impact of local and regional sources of ambient particulate matter in urban environments. However, quantitative mixing state data are challenging to obtain using single particle mass spectrometers. In this study, the quantitative chemical composition of carbonaceous single particles has been estimated using an aerosol time-of-flight mass spectrometer (ATOFMS) as part of the MEGAPOLI 2010 winter campaign in Paris, France. Relative peak areas of marker ions for elemental carbon (EC), organic aerosol (OA), ammonium, nitrate, sulphate and potassium were compared with concurrent measurements from an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS), a thermal/optical OCEC analyser and a particle into liquid sampler coupled with ion chromatography (PILS-IC). ATOFMS-derived mass concentrations reproduced the variability of these species well (R2 = 0.67–0.78), and ten discrete mixing states for carbonaceous particles were identified and quantified. Potassium content was used to identify particles associated with biomass combustion. The chemical mixing state of HR-ToF-AMS organic aerosol factors, resolved using positive matrix factorization, was also investigated through comparison with the ATOFMS dataset. The results indicate that hydrocarbon-like OA (HOA) detected in Paris is associated with two EC-rich mixing states which differ in their relative sulphate content, while fresh biomass burning OA (BBOA) is associated with two mixing states which differ significantly in their OA/EC ratios. Aged biomass burning OA (OOA2-BBOA) was found to be significantly internally mixed with nitrate, while secondary, oxidized OA (OOA) was associated with five particle mixing states, each exhibiting different relative secondary inorganic ion content. Externally mixed secondary organic aerosol was not observed. These findings demonstrate the heterogeneity of primary and secondary organic aerosol mixing states in Paris. Examination of the temporal behaviour and chemical composition of the ATOFMS classes also enabled estimation of the relative contribution of transported emissions of each chemical species and total particle mass in the size range investigated. Only 22% of the total ATOFMS-derived particle mass was apportioned to fresh, local emissions, with 78% apportioned to regional/continental scale emissions.


2008 ◽  
Vol 275 (1-3) ◽  
pp. 1-10 ◽  
Author(s):  
Alla Zelenyuk ◽  
Dan Imre ◽  
Eun Ju Nam ◽  
Yiping Han ◽  
Klaus Mueller

2016 ◽  
Author(s):  
Camille M. Sultana ◽  
Gavin Cornwell ◽  
Paul Rodriguez ◽  
Kimberly A. Prather

Abstract. Single particle mass spectrometer (SPMS) analysis of aerosols has become increasingly popular since its invention in the 1990s. Today many iterations of commercial and lab-built SPMS are in use worldwide. However supporting analysis toolkits for these powerful instruments are either outdated, have limited functionality, or are versions that are not available to the scientific community at large. In an effort to advance this field and allow better communication and collaboration between scientists we have developed FATES (Flexible Analysis Toolkit for the Exploration of SPMS data), a MATLAB toolkit easily extensible to an array of SPMS designs and data formats. FATES was developed to minimize the computational demands of working with large datasets while still allowing easy maintenance, modification, and utilization by novice programmers. FATES permits scientists to explore, without constraint, complex SPMS data with simple scripts in a language popular for scientific numerical analysis. In addition FATES contains an array of data visualization GUIs which can aid both novice and expert users in calibration of raw data, exploration of the dependence of mass spectra characteristics on size, time, and peak intensity, as well investigations of clustered data sets.


2012 ◽  
Vol 5 (1) ◽  
pp. 225-241 ◽  
Author(s):  
F. Gaie-Levrel ◽  
S. Perrier ◽  
E. Perraudin ◽  
C. Stoll ◽  
N. Grand ◽  
...  

Abstract. A single particle instrument was developed for real-time analysis of organic aerosol. This instrument, named Single Particle Laser Ablation Mass Spectrometry (SPLAM), samples particles using an aerodynamic lens system for which the theoretical performances were calculated. At the outlet of this system, particle detection and sizing are realized by using two continuous diode lasers operating at λ = 403 nm. Polystyrene Latex (PSL), sodium chloride (NaCl) and dioctylphtalate (DOP) particles were used to characterize and calibrate optical detection of SPLAM. The optical detection limit (DL) and detection efficiency (DE) were determined using size-selected DOP particles. The DE ranges from 0.1 to 90% for 100 and 350 nm DOP particles respectively and the SPLAM instrument is able to detect and size-resolve particles as small as 110–120 nm. During optical detection, particle scattered light from the two diode lasers, is detected by two photomultipliers and the detected signals are used to trigger UV excimer laser (λ = 248 nm) used for one-step laser desorption ionization (LDI) of individual aerosol particles. The formed ions are analyzed by a 1 m linear time-of-flight mass spectrometer in order to access to the chemical composition of individual particles. The TOF-MS detection limit for gaseous aromatic compounds was determined to be 0.85 × 10−15 kg (∼4 × 103 molecules). DOP particles were also used to test the overall operation of the instrument. The analysis of a secondary organic aerosol, formed in a smog chamber by the ozonolysis of indene, is presented as a first application of the instrument. Single particle mass spectra were obtained with an effective hit rate of 8%. Some of these mass spectra were found to be very different from one particle to another possibly reflecting chemical differences within the investigated indene SOA particles. Our study shows that an exhaustive statistical analysis, over hundreds of particles, and adapted reference mass spectra are further needed to understand the chemical meaning of single particle mass spectra of chemically complex submicrometer-sized organic aerosols.


Sign in / Sign up

Export Citation Format

Share Document