organic ions
Recently Published Documents


TOTAL DOCUMENTS

433
(FIVE YEARS 9)

H-INDEX

44
(FIVE YEARS 1)

2022 ◽  
Vol 18 (1) ◽  
pp. e1009749
Author(s):  
Benjamin Martin ◽  
Pablo D. Dans ◽  
Milosz Wieczór ◽  
Nuria Villegas ◽  
Isabelle Brun-Heath ◽  
...  

We have used a variety of theoretical and experimental techniques to study the role of four basic amino acids–Arginine, Lysine, Ornithine and L-2,4-Diaminobutyric acid–on the structure, flexibility and sequence-dependent stability of DNA. We found that the presence of organic ions stabilizes the duplexes and significantly reduces the difference in stability between AT- and GC-rich duplexes with respect to the control conditions. This suggests that these amino acids, ingredients of the primordial soup during abiogenesis, could have helped to equalize the stability of AT- and GC-rich DNA oligomers, facilitating a general non-catalysed self-replication of DNA. Experiments and simulations demonstrate that organic ions have an effect that goes beyond the general electrostatic screening, involving specific interactions along the grooves of the double helix. We conclude that organic ions, largely ignored in the DNA world, should be reconsidered as crucial structural elements far from mimics of small inorganic cations.


2021 ◽  
Vol 923 (1) ◽  
pp. 91
Author(s):  
Sana Ahmed ◽  
Kinsuk Acharyya

Abstract Comet 2I/Borisov is the first interstellar comet observed in the solar system, providing a unique opportunity to understand the physical conditions that prevailed in a distant unknown planetary system. Observations of the comet show that the CO/H2O ratio is higher than that observed in solar system comets at a heliocentric distance r h < 2.5 au. We aim to study the gas-phase coma of comet 2I/Borisov using a multifluid chemical-hydrodynamical model. The gas-phase model includes a host of chemical reactions, with the neutrals, ions, and electrons treated as three separate fluids. Energy exchange between the three fluids due to elastic and inelastic scattering and radiative losses are also considered. Our model results show that in the region of the coma beyond ∼100 km of the nucleus, e−−CO inelastic collisions leading to vibrational excitation of CO causes a loss of energy from the electron fluid. We find a high abundance of CO+ and HCO+ ions, and we show how these two ions affect the creation/destruction rates of other ions such as H2O+, H3O+, N-bearing ions, and large organic ions. We find that the presence of CO leads to a higher abundance of large organic ions and neutrals such as CH 3 OH 2 + , CH 3 OCH 4 + , and CH3OCH3, as compared to a typical H2O-rich solar system comet. We conclude that the presence of a large amount of CO in the coma of comet 2I/Borisov, combined with a low production rate, affects the coma temperature profile and flux of major ionic species significantly.


2020 ◽  
Vol 10 (20) ◽  
pp. 7383
Author(s):  
Irina Bejanidze ◽  
Oleksandr Petrov ◽  
Volodymyr Pohrebennyk ◽  
Tina Kharebava ◽  
Nunu Nakashidze ◽  
...  

The widespread use of surfactants increasingly requires the development and application of reliable methods for the demineralization of wastewaters, preventing environmental pollution. One of the most reliable and effective methods of demineralization of wastewaters is the electrodialysis method. Studying the behavior of large organic ions in the membrane is important for modeling cell membranes and purification of medicinal and biological preparations. The sorption characteristics of the MA-40 and MK-40 ion-exchange membranes in solutions of simple and organic electrolytes, and in a solution of the surfactant were investigated. It was found that the sorption of organic ions by membranes is mainly of an ion-exchange nature. The moisture content and elasticity of the membranes decreases in solutions of organic electrolytes, during the sorption of which the membrane becomes brittle. A study showed that in the solutions of organic electrolytes, the MA-40 membrane retains high electrochemical activity, while the MK-40 in a solution of the surfactant completely loses it. From the data obtained in this work, it is shown that organic ions do not present a hazard when water is desalted by electrodialysis, whereas sorption of surfactant ions leads to membrane poisoning.


2019 ◽  
Vol 21 (37) ◽  
pp. 20770-20781 ◽  
Author(s):  
Monir Hosseini Anvari ◽  
Phillip Choi

Detachment of decanoate ions from the octahedral surface of kaolinite in the presence of Ca(Cl)2.


Sign in / Sign up

Export Citation Format

Share Document