scholarly journals Extremely Acidic Eukaryotic (Micro) Organisms: Life in Acid Mine Drainage Polluted Environments—Mini-Review

Author(s):  
Ana Teresa Luís ◽  
Francisco Córdoba ◽  
Catarina Antunes ◽  
Raul Loayza-Muro ◽  
José Antonio Grande ◽  
...  

Acid Mine Drainage (AMD) results from sulfide oxidation, which incorporates hydrogen ions, sulfate, and metals/metalloids into the aquatic environment, allowing fixation, bioaccumulation and biomagnification of pollutants in the aquatic food chain. Acidic leachates from waste rock dams from pyritic and (to a lesser extent) coal mining are the main foci of Acid Mine Drainage (AMD) production. When AMD is incorporated into rivers, notable changes in water hydro-geochemistry and biota are observed. There is a high interest in the biodiversity of this type of extreme environments for several reasons. Studies indicate that extreme acid environments may reflect early Earth conditions, and are thus, suitable for astrobiological experiments as acidophilic microorganisms survive on the sulfates and iron oxides in AMD-contaminated waters/sediments, an analogous environment to Mars; other reasons are related to the biotechnological potential of extremophiles. In addition, AMD is responsible for decreasing the diversity and abundance of different taxa, as well as for selecting the most well-adapted species to these toxic conditions. Acidophilic and acidotolerant eukaryotic microorganisms are mostly composed by algae (diatoms and unicellular and filamentous algae), protozoa, fungi and fungi-like protists, and unsegmented pseudocoelomata animals such as Rotifera and micro-macroinvertebrates. In this work, a literature review summarizing the most recent studies on eukaryotic organisms and micro-organisms in Acid Mine Drainage-affected environments is elaborated.

2020 ◽  
Vol 17 (2) ◽  
pp. 93 ◽  
Author(s):  
Carlos Ruiz Cánovas ◽  
Francisco Macías ◽  
Manuel Olías ◽  
Maria Dolores Basallote ◽  
Rafael Pérez-López ◽  
...  

Environmental contextNatural weathering of rocks may release technology critical elements (TCEs) to the environment, and anthropogenic activities can noticeably increase TCE release rates. We investigated acid mine drainage outflows from an underground sulfide mine in south-west Spain, reporting TCE concentrations orders of magnitude higher than those observed in natural waters. The findings improve our knowledge on mobility of TCEs in different geological settings. AbstractExtensive extraction of technology critical elements (TCEs) from the lithosphere and their use results in a growing dispersion and remobilisation of these elements within the environmental compartments. We investigated the concentration and mobility of different TCEs (rare earth elements (REEs), Sc, Y, Ga and Tl) in acid mine drainage (AMD) outflows from a massive sulfide underground mine in south-west Spain for around 2 years. High levels of TCEs were observed; average concentrations of 8.2mgL−1 of REEs, 1.5mgL−1 of Y, 80µgL−1 of Ga, 53µgL−1 of Sc and 42µgL−1 of Tl were reported, several orders of magnitude higher than those observed in natural waters. The TCEs source in the study site is primarily accessory minerals in the host rocks, although the contribution of Ga and Tl by sulfides cannot be discarded. A seasonal variability in TCEs is observed in AMD waters, although their maximum concentrations do not coincide with those of sulfide-related elements. TCEs seem not to be controlled by the precipitation of secondary minerals, but by the intensity of chemical weathering inside the mined zone. A positive correlation between REEs and the Si/Na+K ratio seems to indicate that these elements are linked to resistant minerals to weathering.


Sign in / Sign up

Export Citation Format

Share Document